scholarly journals Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 609 ◽  
Author(s):  
Jinlan Li ◽  
Chenxu Meng ◽  
Le Yu ◽  
Yun Li ◽  
Feng Yan ◽  
...  

In this paper, the chemical vapor deposition (CVD) processing for 4H-SiC epilayer is investigated with particular emphasis on the defects and the noise properties. It is experimentally found that the process parameters of C/Si ratio strongly affect the surface roughness of epilayers and the density of triangular defects (TDs), while no direct correlation between the C/Si ratio and the deep level defect Z1/2 could be confirmed. By adjusting the C/Si ratio, a decrease of several orders of magnitudes in the noise level for the 4H-SiC Schottky barrier diodes (SBDs) could be achieved attributing to the improved epilayer quality with low TD density and low surface roughness. The work should provide a helpful clue for further improving the device performance of both the 4H-SiC SBDs and the Schottky barrier ultraviolet photodetectors fabricated on commercial 4H-SiC wafers.

2006 ◽  
Vol 527-529 ◽  
pp. 497-500 ◽  
Author(s):  
Sung Wook Huh ◽  
A.Y. Polyakov ◽  
Hun Jae Chung ◽  
Saurav Nigam ◽  
Marek Skowronski ◽  
...  

Deep electron and hole traps were studied in a series of high purity 6H-SiC single crystals grown by Halide Chemical Vapor Deposition (HCVD) method at various C/Si flow ratios and at temperatures between 2000 oC and 2100 oC. Characterization included Low Temperature Photoluminescence (LTPL), Deep Level Transient Spectroscopy (DLTS), Minority Carrier Transient Spectroscopy (MCTS), and Thermal Admittance Spectroscopy (TAS) measurements. Concentrations of all deep traps were shown to strongly decrease with increased C/Si flow ratio and with increased growth temperature. The results indicate that the majority of deep centers in 6H-SiC crystals grown by HCVD are due to native defects or complexes of native defects promoted by Si-rich growth conditions. The observed growth temperature dependence of residual donor concentration and traps density is explained by increasing the effective C/Si ratio at higher temperatures for the same nominal ratio of C and Si flows.


Author(s):  
zhikun zhang ◽  
lianlian xia ◽  
Lizhao Liu ◽  
Yuwen Chen ◽  
zuozhi wang ◽  
...  

Large surface roughness, especially caused by the large particles generated during both the transfer and the doping processes of graphene grown by chemical vapor deposition (CVD) is always a critical...


2021 ◽  
Vol 118 (16) ◽  
pp. 162109
Author(s):  
Esmat Farzana ◽  
Fikadu Alema ◽  
Wan Ying Ho ◽  
Akhil Mauze ◽  
Takeki Itoh ◽  
...  

1995 ◽  
Vol 395 ◽  
Author(s):  
X. Zhang ◽  
P. Kung ◽  
D. Walker ◽  
A. Saxler ◽  
M. Razeghi

ABSTRACTWe report the growth and photoluminescence characterization of GaN grown on different substrates and under different growth conditions using metalorganic chemical vapor deposition. The deep-level yellow luminescence centered at around 2.2eV is attributed to native defect, most possibly the gallium vacancy. The yellow luminescence can be substantially reduced By growing GaN under Ga-rich condition or doping GaN with Ge or Mg.


2001 ◽  
Vol 664 ◽  
Author(s):  
C. Y. Wang ◽  
E. H. Lim ◽  
H. Liu ◽  
J. L. Sudijono ◽  
T. C. Ang ◽  
...  

ABSTRACTIn this paper the impact of the ESL (Etch Stop layer) nitride on the device performance especially the threshold voltage (Vt) has been studied. From SIMS analysis, it is found that different nitride gives different H concentration, [H] in the Gate oxide area, the higher [H] in the nitride film, the higher H in the Gate Oxide area and the lower the threshold voltage. It is also found that using TiSi instead of CoSi can help to stop the H from diffusing into Gate Oxide/channel area, resulting in a smaller threshold voltage drift for the device employed TiSi. Study to control the [H] in the nitride film is also carried out. In this paper, RBS, HFS and FTIR are used to analyze the composition changes of the SiN films prepared using Plasma enhanced Chemical Vapor deposition (PECVD), Rapid Thermal Chemical Vapor Deposition (RTCVD) with different process parameters. Gas flow ratio, RF power and temperature are found to be the key factors that affect the composition and the H concentration in the film. It is found that the nearer the SiN composition to stoichiometric Si3N4, the lower the [H] in SiN film because there is no excess silicon or nitrogen to be bonded with H. However the lowest [H] in the SiN film is limited by temperature. The higher the process temperature the lower the [H] can be obtained in the SiN film and the nearer the composition to stoichiometric Si3N4.


2012 ◽  
Vol 476-478 ◽  
pp. 2353-2356
Author(s):  
Wen Qi Dai ◽  
Lin Jun Wang ◽  
Jian Huang ◽  
Yi Feng Liu ◽  
Ke Tang ◽  
...  

Nanocrystalline diamond (NCD) films were synthesized by hot-filament chemical vapor deposition (HFCVD) method at different temperatures (600 °C, 620°C, 640°C and 660°C). The AFM and Raman analyses demonstrated that deposition temperature has a great effect on the surface roughness and quality of NCD films and 620°C is the temperature to grow NCD films with smooth surfaces.


2006 ◽  
Vol 910 ◽  
Author(s):  
Charles W. Teplin ◽  
Matthew Page ◽  
Eugene Iwaniczko ◽  
Kim M. Jones ◽  
Robert M. Ready ◽  
...  

AbstractWe grow epitaxial silicon films onto (100) silicon wafers from pure silane by hot-wire chemical vapor deposition (HWCVD). The films grow epitaxially for a thickness hepi before a Si:H cones nucleate and expand. We study the dependence of hepi on growth rate and the differences between Ta and W filaments. The surface morphology of thin but completely epitaxial films are studied in order to correlate the surface roughness during growth with the eventual epitaxial breakdown thickness. Surface roughness, strain and H at the wafer/film interface are not likely to cause the observed breakdown.


Sign in / Sign up

Export Citation Format

Share Document