scholarly journals Cold Atmospheric Pressure Microplasma Pipette for Disinfection of Methicillin-Resistant Staphylococcus aureus

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1103
Author(s):  
Geunyoung Nam ◽  
Muhwan Kim ◽  
Yeonsook Jang ◽  
Sungbo Cho

Microbial infections should be controlled and prevented for successful wound healing and tissue regeneration. Various disinfection methods exist that use antibiotics, ultraviolet (UV), heat, radiation, or chemical disinfectants; however, cold atmospheric pressure plasma has exhibited a unique and effective antibacterial ability that is not affected by antibiotic resistance or pain. This study develops a cold atmospheric pressure microplasma pipette (CAPMP) that outputs an Ar plasma plume through a tube with an inner radius of 180 μm for disinfection in a small area. The CAPMP was evaluated using Staphylococcus aureus and methicillin-resistant Staphylococcus aureus diluted in liquid media, spread on solid agar, or covered by dressing gauze. An increase in the treatment time of CAPMP resulted in a decrease in the number of colonies of the grown microorganism (colony forming unit) and an increase in the disinfected area for both bacteria. The disinfection ability of CAPMP was observed when the bacteria were covered with dressing gauze and was dependent on the number of gauze layers.

2021 ◽  
Vol 9 (5) ◽  
pp. 1072
Author(s):  
Li Guo ◽  
Lu Yang ◽  
Yu Qi ◽  
Gulimire Niyazi ◽  
Lingling Huang ◽  
...  

Biofilms formed by multidrug-resistant bacteria are a major cause of hospital-acquired infections. Cold atmospheric-pressure plasma (CAP) is attractive for sterilization, especially to disrupt biofilms formed by multidrug-resistant bacteria. However, the underlying molecular mechanism is not clear. In this study, CAP effectively reduced the living cells in the biofilms formed by methicillin-resistant Staphylococcus aureus, and 6 min treatment with CAP reduced the S. aureus cells in biofilms by 3.5 log10. The treatment with CAP caused the polymerization of SaFtsZ and SaClpP proteins in the S. aureus cells of the biofilms. In vitro analysis demonstrated that recombinant SaFtsZ lost its self-assembly capability, and recombinant SaClpP lost its peptidase activity after 2 min of treatment with CAP. Mass spectrometry showed oxidative modifications of a cluster of peaks differing by 16 Da, 31 Da, 32 Da, 47 Da, 48 Da, 62 Da, and 78 Da, induced by reactive species of CAP. It is speculated that the oxidative damage to proteins in S. aureus cells was induced by CAP, which contributed to the reduction of biofilms. This study elucidates the biological effect of CAP on the proteins in bacterial cells of biofilms and provides a basis for the application of CAP in the disinfection of biofilms.


Open Physics ◽  
2014 ◽  
Vol 12 (3) ◽  
Author(s):  
Maja Miletić ◽  
Dragana Vuković ◽  
Irena Živanović ◽  
Ivana Dakić ◽  
Ivan Soldatović ◽  
...  

AbstractIn numerous recent papers plasma chemistry of non equilibrium plasma sources operating at atmospheric pressure has been linked to plasma medical effects including sterilization. In this paper we present a study of the effectiveness of an atmospheric pressure plasma source, known as plasma needle, in inhibition of the growth of biofilm produced by methicillin resistant Staphylococcus aureus (MRSA). Even at the lowest powers the biofilms formed by inoculi of MRSA of 104 and 105 CFU have been strongly affected by plasma and growth in biofilms was inhibited. The eradication of the already formed biofilm was not achieved and it is required to go to more effective sources.


2019 ◽  
Vol 82 (11) ◽  
pp. 1828-1836 ◽  
Author(s):  
ALIYU IDRIS MUHAMMAD ◽  
RUILING LV ◽  
XINYU LIAO ◽  
WEIJUN CHEN ◽  
DONGHONG LIU ◽  
...  

ABSTRACT The impact of cold atmospheric pressure plasma treatment on the inactivation kinetics of Bacillus cereus ATCC 14579 and the resulting quality changes was investigated in tiger nut (Cyperus esculentus L.) milk (TNM). The effect of input power (39, 43, and 46 W) and treatment time (0 to 270 s) was fitted using the Weibull model to represent the microbial kinetic inactivation in the treated TNM. Inactivation efficacy increased with an increase in treatment time and input power. A 5.28-log reduction was achieved at 39 to 46 W without significant changes in titratable acidity, whereas no reduction in titratable acidity was observed in the pasteurized sample. The inactivation kinetics was adequately described by the Weibull model. Higher input power of 43 and 46 W and 120 s of treatment resulted in marked decreases in pH, flavonoid concentration, and antioxidant activity compared with those parameters in pasteurized TNM. Increases in total color difference and phenolic concentrations also were observed. The results indicate that these changes were caused by the immanent plasma reactive species. This study provides valuable inactivation kinetics information for food safety assessment studies of B. cereus vegetative cells in TNM.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 730
Author(s):  
Nicolás Gómez-Sequeda ◽  
Marlon Cáceres ◽  
Elena E. Stashenko ◽  
William Hidalgo ◽  
Claudia Ortiz

The emergence of multidrug resistant microorganisms represents a global challenge due to the lack of new effective antimicrobial agents. In this sense, essential oils (EOs) are an alternative to be considered because of their anti-inflammatory, antiviral, antibacterial, and antibiofilm biological activities. Therefore, multiple efforts have been made to consider the potential use of EOs in the treatment of infections which are caused by resistant microorganisms. In this study, 15 EOs of both Colombian and introduced aromatic plants were evaluated against pathogenic strains of E. coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA) in planktonic and sessile states in order to identify relevant and promising alternatives for the treatment of microbial infections. Forty different compounds were identified in the 15 EO with nine of them constituted mainly by oxygenated monoterpenes (OM). EOs from Lippia origanoides, chemotypes thymol, and carvacrol, displayed the highest antibacterial activity against E. coli O157:H7 (MIC50 = 0.9 and 0.3 mg/mL, respectively) and MRSA (MIC50 = 1.2 and 0.6 mg/mL, respectively). These compounds from EOs had also the highest antibiofilm activity (inhibition percentage > 70.3%). Using scanning electron microscopy (SEM), changes in the size and morphology of both bacteria were observed when they were exposed to sub-inhibitory concentrations of L. origanoides EO carvacrol chemotype. EOs from L. origanoides, thymol, and carvacrol chemotypes represented a viable alternative for the treatment of microbial infections; however, the Selectivity Index (SI ≤ 3) indicated that it was necessary to study alternatives to reduce its in vitro cytotoxicity.


2020 ◽  
Vol 2 (1) ◽  
pp. 51-61
Author(s):  
Vasu D ◽  
Ramkumar M.C ◽  
Arunkumar A ◽  
Navaneetha Pandiyaraj K

The oxidative degradation of cold atmospheric pressure plasma assisted degradation of malachite Green (MG) was investigated in this study. Cold atmospheric pressure plasma assisted MG degradation process was carried out as a function various plasma treatment time (05, 10, and 15 mins). The % of degradation and presence carbon content in the plasma treated MG was examined by UV-Visible spectroscopy (UV-Vis) and total organic carbon (TOC) analyzer. Optical emission spectrometer was used to identify formation of various reactive species during in situ plasma treatment. The higher degradation percentage of 90% was obtained after plasma treatment time of 15 min and value of TOC also found to decreased significantly with increasing plasma treatment time.  Toxicity of the plasma-treated MG aqueous solution samples was also examined by Staphylococcus aureus (S.aureus) bacteria.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1018
Author(s):  
Lu Yang ◽  
Gulimire Niyazi ◽  
Yu Qi ◽  
Zhiqian Yao ◽  
Lingling Huang ◽  
...  

Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are life-threatening due to their strong multidrug resistance, especially since the biofilms formed by MRSA are more difficult to inactivate by antibiotics, causing long term recurrence of infection. Plasma-activated saline (PAS), a derived form of cold atmospheric-pressure plasma, can effectively inactivate bacteria and cancer cells and has been applied to sterilization and cancer treatment. Previous studies have demonstrated that the pretreatment of MRSA with PAS could promote the action of antibiotics. Here, the PAS was used as an antibiotic adjuvant to promote the inactivation of MRSA biofilms by rifampicin and vancomycin, and the combined treatment reduced approximately 6.0-log10 MRSA cells in biofilms. The plasma-activated saline and rifampicin synergistically and effectively reduced the systemic infection in the murine model. The histochemical analysis and the blood hematological and biochemical test demonstrated that the combined treatment with plasma-activated saline and rifampicin improved the blood hematological and biochemical parameters of infected mice by reducing the infection. Therefore, PAS based on plasma technology represents a new strategy for the treatment of infectious disease caused by multidrug-resistant bacteria and alleviating antibiotic resistance.


Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985042
Author(s):  
Amna A. Saddiq ◽  
Azza M. Mohamed

Many plant-derived compounds have been used to treat microbial infections. Staphylococcus aureus a common cause of many organ infections, has generated increasing concern due to its resistance to antibacterial drugs. This work was carried out to explore the susceptibility of 6 strains (LN872136, LN872137, LN871238, LN871239, LN872140, and LN871241) of methicillin-resistant Staphylococcus aureus to aqueous extract of Lepidium sativum seeds in vitro. Various concentrations (5-20 mg/mL) were used to evaluate the effect of the extract on bacteria growth via the assessment of the microbial biomass and the inhibition zone (IZ). The results showed that the plant extract at 15 or 20 mg/mL, significantly decreased the the biomass of S aureus strains after 24 or 48 hours exposure period. Staphylococcus aureus (LN871241) showed the largest IZ at 20 mg/mL and documented by scanning electron microscope. The current work may suggest that L sativum seed extract can be candidate as a promising antimicrobial agent to treat infection with methicillin-resistant S aureus.


Sign in / Sign up

Export Citation Format

Share Document