scholarly journals Carvacrol and Thymol Combat Desiccation Resistance Mechanisms in Salmonella enterica Serovar Tennessee

2021 ◽  
Vol 10 (1) ◽  
pp. 44
Author(s):  
Ahmed G. Abdelhamid ◽  
Ahmed E. Yousef

Some Salmonella enterica serovars are frequently associated with disease outbreaks in low-moisture foods (LMF) due to their ability to adapt efficiently to desiccation stress. These serovars are often persistent during food processing. Disruption of these resistance responses was accomplished previously using the membrane-active lipopeptide, paenibacterin. This study was initiated to determine how desiccation resistance mechanisms are overcome when Salmonella Tennessee, a known resistant serovar, is treated with the membrane-active food additives carvacrol and thymol. Knowing that the minimum inhibitory concentrations (MICs) of carvacrol and thymol against Salmonella Tennessee are 200 and 100 µg/mL, the concentrations tested were 100–400 and 50–200 µg/mL, respectively. Results show that desiccation-adapted Salmonella Tennessee, prepared by air drying at 40% relative humidity and 22–25 °C for 24 h, was not inactivated when exposed for 4.0 h to less than 2xMIC of the two additives. Additionally, treatment of desiccation-adapted Salmonella Tennessee for 120 min with carvacrol and thymol at the MIC-level sensitized the cells (1.4–1.5 log CFU/mL reduction) to further desiccation stress. Treating desiccation-adapted Salmonella Tennessee with carvacrol and thymol induced leakage of intracellular potassium ions, reduced the biosynthesis of the osmoprotectant trehalose, reduced respiratory activity, decreased ATP production, and caused leakage of intracellular proteins and nucleic acids. Carvacrol, at 200–400 µg/mL, significantly downregulated the transcription of desiccation-related genes (proV, STM1494, and kdpA) as determined by the reverse-transcription quantitative PCR. The current study revealed some of the mechanisms by which carvacrol and thymol combat desiccation-resistant Salmonella Tennessee, raising the feasibility of using these additives to control desiccation-adapted S. enterica in LMF.

2019 ◽  
Vol 85 (14) ◽  
Author(s):  
Ahmed G. Abdelhamid ◽  
Ahmed E. Yousef

ABSTRACT Salmonella enterica is increasingly linked to disease outbreaks associated with consumption of low-water-activity (low-aw) foods. Persistence of the pathogen in these foods was attributed to its ability to implement desiccation resistance mechanisms. Published knowledge about methods that disrupt desiccation resistance in S. enterica is lacking. We hypothesize that strong membrane-active compounds disrupt the desiccation resistance that S. enterica may acquire in low-aw foods or environments. The newly discovered antimicrobial lipopeptide paenibacterin was the membrane-active agent investigated in this study. Strains of S. enterica serovars Tennessee and Eimsbuettel, with a history of association with low-moisture foods, were investigated. The viability of these strains did not decrease significantly during dehydration and subsequent storage in the dehydrated state. Considering that the paenibacterin MIC against S. enterica strains was 8 μg/ml, concentrations of 4 to 16 μg/ml paenibacterin were tested. Within this range, desiccation-adapted S. Eimsbuettel was much more tolerant to the antimicrobial agent than the desiccation-adapted S. Tennessee. Pretreatment with 8 μg/ml paenibacterin increased inactivation of S. enterica during desiccation. The use of paenibacterin at 16 μg/ml or higher concentrations resulted in leakage of intracellular potassium ions from desiccation-adapted cells. Paenibacterin significantly decreased the biosynthesis of the intracellular osmoprotectant solute, trehalose, in a concentration-dependent manner. Treatment with 64 μg/ml paenibacterin increased the permeability of the cytoplasmic membranes of desiccation-adapted cells. Transcription of the desiccation-related genes proV, STM1494, kdpA, and otsB in response to paenibacterin treatment was investigated using reverse transcription-quantitative PCR. Transcription of some of these genes was downregulated in a concentration- and strain-dependent manner. IMPORTANCE Salmonella enterica adapts effectively and persists for a long time in low-aw foods or environments through resistance mechanisms to desiccation stress. Desiccation-resistant cells compromise food safety and constitute a serious health hazard. Strategies to combat desiccation resistance in S. enterica are needed to sensitize the pathogen to lethal processes used in food preservation. The study proved that the membrane-active lipopeptide paenibacterin disrupts the resistance in desiccation-adapted S. enterica, as measured by phenotypic, biochemical, and genetic analyses. This study highlighted the role of the lipopeptide paenibacterin in disrupting mechanisms employed by S. enterica to resist desiccation. This knowledge may lead to the design of novel control measures to improve the safety of low-aw foods.


2019 ◽  
Vol 82 (11) ◽  
pp. 1896-1900
Author(s):  
A. M. JONES-IBARRA ◽  
C. Z. ALVARADO ◽  
CRAIG D. COUFAL ◽  
T. MATTHEW TAYLOR

ABSTRACT Chicken carcass frames are used to obtain mechanically separated chicken (MSC) for use in other further processed food products. Previous foodborne disease outbreaks involving Salmonella-contaminated MSC have demonstrated the potential for the human pathogen to be transmitted to consumers via MSC. The current study evaluated the efficacy of multiple treatments applied to the surfaces of chicken carcass frames to reduce microbial loads on noninoculated frames and frames inoculated with a cocktail of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium. Inoculated or noninoculated frames were left untreated (control) or were subjected to treatment using a prototype sanitization apparatus. Treatments consisted of (i) a sterile water rinse, (ii) a water rinse followed by 5 s of UV-C light application, or (iii) an advanced oxidation process (AOP) combining 5 or 7% (v/v) hydrogen peroxide (H2O2) with UV-C light. Treatment with 7% H2O2 and UV-C light reduced numbers of aerobic bacteria by up to 1.5 log CFU per frame (P < 0.05); reductions in aerobic bacteria subjected to other treatments did not statistically differ from one another (initial mean load on nontreated frames: 3.6 ± 0.1 log CFU per frame). Salmonella numbers (mean load on inoculated, nontreated control was 5.6 ± 0.2 log CFU per frame) were maximally reduced by AOP application in comparison with other treatments. No difference in Salmonella reductions obtained by 5% H2O2 (1.1 log CFU per frame) was detected compared with that obtained following 7% H2O2 use (1.0 log CFU per frame). The AOP treatment for sanitization of chicken carcass frames reduces microbial contamination on chicken carcass frames that are subsequently used for manufacture of MSC.


2017 ◽  
Vol 4 (4) ◽  
Author(s):  
Takashi Matono ◽  
Masatomo Morita ◽  
Koji Yahara ◽  
Ken-ichi Lee ◽  
Hidemasa Izumiya ◽  
...  

Abstract Background Little is known about the evolutionary process and emergence time of resistance mutations to fluoroquinolone in Salmonella enterica serovar Typhi. Methods We analyzed S. Typhi isolates collected from returned travelers between 2001 and 2016. Based on ciprofloxacin susceptibility, isolates were categorized as highly resistant (minimum inhibitory concentration [MIC] ≥ 4 μg/mL [CIPHR]), resistant (MIC = 1–2 μg/mL [CIPR]), intermediate susceptible (MIC = 0.12–0.5 μg/mL [CIPI]), and susceptible (MIC ≤ 0.06 μg/mL [CIPS]). Results A total of 107 isolates (33 CIPHR, 14 CIPR, 30 CIPI, and 30 CIPS) were analyzed by whole-genome sequencing; 2461 single nucleotide polymorphisms (SNPs) were identified. CIPS had no mutations in the gyrA or parC genes, while each CIPI had 1 of 3 single mutations in gyrA (encoding Ser83Phe [63.3%], Ser83Tyr [33.3%], or Asp87Asn [3.3%]). CIPHR had the same 3 mutations: 2 SNPs in gyrA (encoding Ser83Phe and Asp87Asn) and a third in parC (encoding Ser80Ile). CIPHR shared a common ancestor with CIPR and CIPI isolates harboring a single mutation in gyrA encoding Ser83Phe, suggesting that CIPHR emerged 16 to 23 years ago. Conclusions Three SNPs—2 in gyrA and 1 in parC—are present in S. Typhi strains highly resistant to fluoroquinolone, which were found to have evolved in 1993–2000, approximately 10 years after the beginning of the ciprofloxacin era. Highly resistant strains with survival advantages arose from strains harboring a single mutation in gyrA encoding Ser83Phe. Judicious use of fluoroquinolones is warranted to prevent acceleration of such resistance mechanisms in the future.


2015 ◽  
Vol 78 (6) ◽  
pp. 1182-1185 ◽  
Author(s):  
JEFFREY S. KARNS ◽  
BRADD J. HALEY ◽  
JO ANN S. VAN KESSEL

Molecular serotyping through the use of PCR is a simple and useful technique for characterizing isolates of Salmonella enterica subsp. enterica belonging to serogroups B, C1, C2, D1, and E1, which are the majority of the isolates associated with human disease outbreaks. However, many of the Salmonella strains currently isolated from dairy farms in the northeastern United States are serovar Cerro, a group K strain not detected by this assay. Primers from a well-known PCR assay for the identification of Salmonella were added to a commonly used serotyping assay so that strains, such as Salmonella Cerro, that do not produce bands in the original assay can be confirmed as belonging to S. enterica subsp. enterica. The modified assay frequently misidentified the serogroup of Salmonella Mbandaka isolates because of failure to amplify the wzxC1 amplicon. Therefore, the reverse primer for the wzxC1 target was modified based on in silico analysis to provide consistent classification of Salmonella Mbandaka as belonging to serogroup C1. These two modifications to the serogrouping PCR method enhance the utility of the method for characterizing Salmonella isolates.


2012 ◽  
Vol 78 (20) ◽  
pp. 7407-7413 ◽  
Author(s):  
Qian Zhang ◽  
Tao Yan

ABSTRACTNaturalized soilEscherichia colipopulations need to resist common soil desiccation stress in order to inhabit soil environments. In this study, four representative soilE. colistrains and one lab strain, MG1655, were tested for desiccation resistance via die-off experiments in sterile quartz sand under a potassium acetate-induced desiccation condition. The desiccation stress caused significantly lower die-off rates of the four soil strains (0.17 to 0.40 day−1) than that of MG1655 (0.85 day−1). Cellular responses, including extracellular polymeric substance (EPS) production, exogenous glycine betaine (GB) uptake, and intracellular compatible organic solute synthesis, were quantified and compared under the desiccation and hydrated control conditions. GB uptake appeared not to be a specific desiccation response, while EPS production showed considerable variability among theE. colistrains. AllE. colistrains produced more intracellular trehalose, proline, and glutamine under the desiccation condition than the hydrated control, and only the trehalose concentration exhibited a significant correlation with the desiccation-contributed die-off coefficients (Spearman's ρ = −1.0;P= 0.02).De novotrehalose synthesis was further determined for 15E. colistrains from both soil and nonsoil sources to determine its prevalence as a specific desiccation response. MostE. colistrains (14/15) synthesized significantly more trehalose under the desiccation condition, and the soilE. colistrains produced more trehalose (106.5 ± 44.9 μmol/mg of protein [mean ± standard deviation]) than the nonsoil reference strains (32.5 ± 10.5 μmol/mg of protein).


Author(s):  
Rachel K Streufert ◽  
Susanne E Keller ◽  
Joelle K Salazar

Growth on solid media as sessile cells is believed to increase the desiccation tolerance of Salmonella enterica . However, the reasons behind increased resistance have not been well explored. In addition, the same effect has not been examined for other foodborne pathogens such as pathogenic Escherichia coli or Listeria monocytogenes . The purpose of this research was two-fold: first, to determine the role of oxygenation during growth on the desiccation resistance of S. enterica , E. coli , and L. monocytogenes , and second, to determine the effect of sessile versus planktonic growth on the desiccation resistance of these pathogens. Three different serotypes each of Salmonella , E. coli , and L. monocytogenes were cultured in trypticase soy broth with 0.6% yeast extract (TSBYE), with (aerobic) shaking or on TSBYE with agar (TSAYE) under either aerobic or anaerobic conditions and harvested in stationary phase. After adding cell suspensions to cellulose filter disks, pathogen survival was determined by enumeration at 0 and after drying for 24 h. Results showed statistical differences in harvested initial populations prior to drying (0 h). For Salmonella , a correlation was found between high initial population and greater survival on desiccation (p = 0.05). In addition, statistical differences (p ≤ 0.05) between survival based on growth type were identified. However, differences found were not the same for the three pathogens, or between their serotypes. In general, Salmonella and E. coli desiccation resistance followed the pattern of aerobic agar media ≥ liquid media ≥ anaerobic agar media. For L. monocytogenes serotypes, resistance to desiccation was not statistically different based on mode of growth. These results indicate growth on solid media under aerobic conditions is not always necessary for optimal desiccation survival but may be beneficial when the desiccation resistance of the test serotype is unknown.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 626
Author(s):  
Yujing Yang ◽  
Deguang Liu ◽  
Xiaoming Liu ◽  
Biyao Wang ◽  
Xiaoqin Shi

The impact of drought on insects has become increasingly evident in the context of global climate change, but the physiological mechanisms of aphids’ responses to desiccating environments are still not well understood. We sampled the wheat aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) from arid areas of northwestern China. Both desiccation-resistant and -nonresistant genotypes were identified, providing direct evidence of genetic divergence in desiccation resistance of S. avenae. Resistant genotypes of wingless S. avenae showed longer survival time and LT50 under the desiccation stress (i.e., 10% relative humidity) than nonresistant genotypes, and wingless individuals tended to have higher desiccation resistance than winged ones. Both absolute and relative water contents did not differ between the two kinds of genotypes. Resistant genotypes had lower water loss rates than nonresistant genotypes for both winged and wingless individuals, suggesting that modulation of water loss rates could be the primary strategy in resistance of this aphid against desiccation stress. Contents of cuticular hydrocarbons (CHC) (especially methyl-branched alkanes) showed significant increase for both resistant and nonresistant genotypes after exposure to the desiccation stress for 24 h. Under desiccation stress, survival time was positively correlated with contents of methyl-branched alkanes for resistant genotypes. Thus, the content of methyl-branched alkanes and their high plasticity could be closely linked to water loss rate and desiccation resistance in S. avenae. Our results provide insights into fundamental aspects and underlying mechanisms of desiccation resistance in aphids, and have significant implications for the evolution of aphid populations in the context of global warming.


2014 ◽  
Vol 58 (10) ◽  
pp. 6151-6156 ◽  
Author(s):  
Lindsey E. Nielsen ◽  
Erik C. Snesrud ◽  
Fatma Onmus-Leone ◽  
Yoon I. Kwak ◽  
Ricardo Avilés ◽  
...  

ABSTRACTTigecycline nonsusceptibility is concerning because tigecycline is increasingly relied upon to treat carbapenem- or colistin-resistant organisms. InEnterobacteriaceae, tigecycline nonsusceptibility is mediated by the AcrAB-TolC efflux pump, among others, and pump activity is often a downstream effect of mutations in their transcriptional regulators, cognate repressor genes, or noncoding regions, as demonstrated inEnterobacteriaceaeandAcinetobacterisolates. Here, we report the emergence of tigecycline nonsusceptibility in a longitudinal series of multidrug-resistant (MDR) and extensively drug-resistant (XDR)Klebsiella pneumoniaeisolates collected during tigecycline therapy and the elucidation of its resistance mechanisms. Clinical isolates were recovered prior to and during tigecycline therapy of a 2.5-month-old Honduran neonate. Antimicrobial susceptibility tests to tigecycline determined that the MIC increased from 1 to 4 μg/ml prior to the completion of tigecycline therapy. Unlike other studies, we did not find increased expression oframA,ramR,oqxA,acrB,marA, orrarAgenes by reverse transcription-quantitative PCR (qRT-PCR). Whole-genome sequencing revealed an IS5insertion element in nonsusceptible isolates 85 bp upstream of a putative efflux pump operon, here namedkpgABC, previously unknown to be involved in resistance. Introduction of thekpgABCgenes in a non-kpgABCbackground increased the MIC of tigecycline 4-fold and is independent of a functional AcrAB-TolC pump. This is the first report to propose a function forkpgABCand identify an insertion element whose presence correlated with thein vivodevelopment of tigecycline nonsusceptibility inK. pneumoniae.


2017 ◽  
Vol 5 (45) ◽  
Author(s):  
Ashraf A. Khan ◽  
Bijay K. Khajanchi ◽  
Sana A. Khan ◽  
Christopher A. Elkins ◽  
Steven L. Foley

ABSTRACT We report here the draft genome sequences of 15 ciprofloxacin-resistant Salmonella enterica strains with resistance to multiple other antibiotics, including aminoglycosides, β-lactams, sulfonamides, tetracycline, and trimethoprim, isolated from different imported foods. Three strains (NCTR75, NCTR281, and NCTR350) showed a high level of ciprofloxacin resistance compared to that of the other isolates. The whole-genome sequencing data provide a better understanding of the antibiotic resistance mechanisms and virulence properties of these isolates.


2021 ◽  
Author(s):  
Abhishek Mishra ◽  
Sudipta Tung ◽  
V R Shree Sruti ◽  
P M Shreenidhi ◽  
Sutirth Dey

Environmental stress is one of the important causes of biological dispersal. At the same time, the process of dispersal itself can incur and/or increase susceptibility to stress for the dispersing individuals. Therefore, in principle, stress can serve as both a cause and a cost of dispersal. Desiccation stress is an environmentally relevant stress faced by many organisms, known to shape their population dynamics and distribution. However, the potentially contrasting roles of desiccation stress as a cause and a cost of dispersal have not been investigated. Furthermore, while desiccation stress often affects organisms in a sex-biased manner, it is not known whether the desiccation-dispersal relationship varies between males and females. We studied the role of desiccation stress as a cause and cost of dispersal in a series of experiments using D. melanogaster adults in two-patch dispersal setups. We were interested in knowing whether (a) dispersers are the individuals that are more susceptible to desiccation stress, (b) dispersers pay a cost in terms of reduced resistance to desiccation stress, (c) dispersal evolution alters the desiccation cost of dispersal, and (d) females pay a reproductive cost of dispersal. For this, we modulated the degree of desiccation stress faced by the flies as well as the provision of rest following a dispersal event. Our data showed that desiccation stress served as a significant cause of dispersal in both sexes. Further investigation revealed an increase in both male and female dispersal propensity with increasing desiccation duration. Next, we found a male-biased cost of dispersal in terms of reduced desiccation resistance. This trend was preserved in dispersal-selected and non-selected controls as well, where the desiccation cost of dispersal in females was very low compared to the males. Finally, we found that the females instead paid a significant reproductive cost of dispersal. Our results highlight the complex relationship between desiccation stress and dispersal, whereby desiccation resistance can show both a positive and a negative association with dispersal. Furthermore, the sex differences observed in these trait associations may translate into differences in movement patterns, thereby giving rise to sex-biased dispersal.


Sign in / Sign up

Export Citation Format

Share Document