scholarly journals APTC-EC-2A: A Lytic Phage Targeting Multidrug Resistant E. coli Planktonic Cells and Biofilms

2022 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Karen Hon ◽  
Sha Liu ◽  
Sophie Camens ◽  
George Spyro Bouras ◽  
Alkis James Psaltis ◽  
...  

Escherichia coli (E. coli) are common bacteria that colonize the human and animal gastrointestinal tract, where they help maintain a balanced microbiome. However, some E. coli strains are pathogenic and can cause serious infectious diseases and life-threatening complications. Due to the overuse of antibiotics and limited development of novel antibiotics, the emergence of antibiotic-resistant strains has threatened modern medicine, whereby common infections can become lethal. Phage therapy has once again attracted interest in recent years as an alternative treatment option to antibiotics for severe infections with antibiotic-resistant strains. The aim of this study was to isolate and characterize phage against multi-drug resistant E. coli isolated from clinical samples and hospital wastewater. For phage isolation, wastewater samples were collected from The Queen Elizabeth Hospital (Adelaide, SA, Australia) followed by phage enrichment as required. Microbiological assays, electron microscopy and genomic sequencing were carried out to characterize the phage. From the 10 isolated E. coli phages, E. coli phage APTC-EC-2A was the most promising and could lyse 6/7 E. coli clinical isolates. APTC-EC-2A was stable at a broad pH range (3–11) and could lyse the host E. coli at temperatures ranging between 30–50 °C. Furthermore, APTC-EC-2A could kill E. coli in planktonic and biofilm form. Electron microscopy and genomic sequencing indicated the phage to be from the Myoviridae family and of lytic nature. In conclusion, the newly isolated phage APTC-EC-2A has the desired properties that support its potential for development as a therapeutic agent against therapy refractory E. coli infections.

Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 811
Author(s):  
Md. Akil Hossain ◽  
Hae-Chul Park ◽  
Sung-Won Park ◽  
Seung-Chun Park ◽  
Min-Goo Seo ◽  
...  

Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281–1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals.


2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Sophie Van Hamelsveld ◽  
Muyiwa E Adewale ◽  
Brigitta Kurenbach ◽  
William Godsoe ◽  
Jon S Harding ◽  
...  

Abstract Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.


The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7320-7329
Author(s):  
Muhammad Asif ◽  
Fazli Rabbi Awan ◽  
Qaiser Mahmood Khan ◽  
Bongkot Ngamsom ◽  
Nicole Pamme

We investigate paper microfluidic devices for detection of pathogenic bacteria and their sensitivity towards β-lactamase and Extended Spectrum Beta Lactamases (ESBLs) in milk samples to enable appropriate prescription of antibiotics for mastitis.


1997 ◽  
Vol 60 (8) ◽  
pp. 1001-1005 ◽  
Author(s):  
MARIA A. TESSI ◽  
MARIA S. SALSI ◽  
MARIA I. CAFFER ◽  
MARIA A. MOGUILEVSKY

The antibiotic resistance profiles and transferable R factors of Salmonella and Escherichia coli isolates from 104 broiler carcasses taken from one processing plant were determined. Carcasses were sampled after immersion chilling. All samples were transported iced and immediately analyzed upon arrival to the laboratory. The resistance patterns of isolates to 12 antibiotics were determined (i.e., ampicillin, cephalothin, streptomycin, sulfisoxazole, trim-ethoprim-sulfamethoxazole, nalidixic acid, tetracycline, neomycin, chloramphenicol, gentamicin, colistin, and nitrofurantoin). Isolates resistant to one or more antibiotics were utilized as donors of resistance to completely antibiotic-sensitive strains, an E. coli K-12, F−, J5, azide-resistant strain and a Salmonella serovar Enteritidis. Transfer of the different R plasmids was confirmed by the determination of the resistance patterns of the transconjugants. Of the 93 Salmonella and 71 E. coli strains isolated from these samples, the largest numbers were resistant to tetracycline (52.7% and 49.3%), sulfisoxazole (45.2% and 42.3%), and streptomycin (37.6% and 39.4%). Large percentages of the Salmonella (33.3%) and the E. coli (30.0%) strains transferred all or part of their resistance to E. coli K-12 in mixed cultures. Great variation was observed between different strains in the frequency at which they transferred resistance. Resistance to tetracycline, sulfisoxazole, and streptomycin was found to be conferred by 31.7%, 29.8%, and 21.6% of the 19 R factors identified. No transfer of resistance to nalidixic acid, gentamicin, cephalothin, nitrofurantoin, and chloramphenicol was detected. When 30 antibiotic-resistant E. coli strains were cultured with a sensitive strain of Salmonella serovar Enteritidis,7 (23.3%) of the resistant strains were found capable of transferring R factors. Only 2 (6.7%) of the resistant strains could transfer R factors and unusual β-galactosidase activity.


Planta Medica ◽  
2019 ◽  
Vol 85 (16) ◽  
pp. 1253-1262 ◽  
Author(s):  
Matthew J. Cheesman ◽  
Alan White ◽  
Ben Matthews ◽  
Ian E. Cock

AbstractThe development of multiple antibiotic–resistant bacteria has vastly depleted our repertoire of effective antibiotic chemotherapies. The development of multi-β-lactam-resistant strains are particularly concerning due to our previous reliance on this class of antibiotics because of their initial efficacy and broad-spectrum activity. With increases in extended-spectrum β-lactam-resistance and an expanded resistance to other classes of antibiotics, there is an urgent need for the development of effective new antibiotic therapies. Terminalia ferdinandiana is an endemic Australian plant known for its high antioxidant and tannin contents. T. ferdinandiana fruit and leaf extracts have strong antibacterial activity against a wide variety of bacterial pathogens. However, T. ferdinandiana extracts have not been tested against ESBL and MRSA antibiotic-resistant pathogens. An objective of this study was to screen T. ferdinandiana fruit and leaf extracts for bacterial growth inhibitory activity by disc diffusion assay against β-lactam-sensitive and -resistant E. coli strains and against methicillin-sensitive and -resistant S. aureus. The minimum inhibitory concentration (MIC) was quantified by liquid dilution techniques. The fruit methanolic extract, as well as the methanolic, aqueous, and ethyl acetate leaf extracts strongly inhibited the growth of the MRSA, with MICs as low as 223 µg/mL. In contrast, the extracts were ineffective inhibitors of ESBL growth. Metabolomic fingerprint analysis identified a diversity and relative abundance of tannins, flavonoids, and terpenoids, several of which have been reported to inhibit MRSA growth in isolation. All extracts were nontoxic in the Artemia nauplii and HDF toxicity assays, further indicating their potential for medicinal use.


1998 ◽  
Vol 61 (10) ◽  
pp. 1390-1395 ◽  
Author(s):  
JOHN A. LOPES

Acid anionic sanitizers for treatment of fruits and vegetables were prepared using ingredients generally recognized as safe by the U.S. Food and Drug Administration or anionic surfactants and organic acid food additives. They met the regulatory definition as sanitizers by showing bactericidal efficacy of 99.999% in 30 s against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 11229. These sanitizers showed a broad spectrum of microbicidal activity against both gram-positive and gram-negative bacteria. Antibiotic-sensitive and resistant strains of Listeria monocytogenes and Salmonella typhimurium were equally susceptible to these sanitizers. The acid anionic sanitizers showed microbicidal efficacy equal to that of hypochlorite against Aeromonas hydrophila, E. coli O157:H7, L. monocytogenes, Pseudomonas aeruginosa, S. typhimurium, and S. aureus. Unlike most other sanitizers, these agents do not covalently react with organic components of food; unlike cationic agents, they do not leave residues. The acid anionic sanitizers are prepared using stable, biodegradable, and nontoxic ingredients. Rapid microbicidal activity and the ease of storage, transportation, and use make these sanitizers an attractive alternative to hypochlorite for sanitizing fruits and vegetables.


1999 ◽  
Vol 67 (4) ◽  
pp. 2005-2009 ◽  
Author(s):  
Monisha G. Scott ◽  
Hong Yan ◽  
Robert E. W. Hancock

ABSTRACT A series of α-helical cationic antimicrobial peptide variants with small amino acid changes was designed. Alterations in the charge, hydrophobicity, or length of the variant peptides did not improve the antimicrobial activity, and there was no statistically significant correlation between any of these factors and the MIC forPseudomonas aeruginosa, Escherichia coli, orSalmonella typhimurium. Individual peptides demonstrated synergy with conventional antibiotics against antibiotic-resistant strains of P. aeruginosa. The peptides varied considerably in the ability to bind E. coli O111:B4 lipopolysaccharide (LPS), and this correlated significantly with their antimicrobial activity and ability to block LPS-stimulated tumor necrosis factor and interleukin-6 production. In general, the peptides studied here demonstrated a broad range of activities, including antimicrobial, antiendotoxin, and enhancer activities.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 972
Author(s):  
Artak Tovmasyan ◽  
Ines Batinic-Haberle ◽  
Ludmil Benov

Widespread antibiotic resistance demands new strategies for fighting infections. Porphyrin-based compounds were long ago introduced as photosensitizers for photodynamic therapy, but light-independent antimicrobial activity of such compounds has not been systematically explored. The results of this study demonstrate that synthetic cationic amphiphilic iron N-alkylpyridylporphyrins exert strong bactericidal action at concentrations as low as 5 μM. Iron porphyrin, FeTnHex-2-PyP, which is well tolerated by laboratory animals, efficiently killed Gram-negative and Gram-positive microorganisms. Its bactericidal activity was oxygen-independent and was controlled by the lipophilicity and accumulation of the compound in bacterial cells. Such behavior is in contrast with the anionic gallium protoporphyrin IX, whose efficacy depends on cellular heme uptake systems. Under aerobic conditions, however, the activity of FeTnHex-2-PyP was limited by its destruction due to redox-cycling. Neither iron released from the Fe-porphyrin nor other decomposition products were the cause of the bactericidal activity. FeTnHex-2-PyP was as efficient against antibiotic-sensitive E. coli and S. aureus as against their antibiotic-resistant counterparts. Our data demonstrate that development of amphiphilic, positively charged metalloporphyrins might be a promising approach in the introduction of new weapons against antibiotic-resistant strains.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 275
Author(s):  
Tamara Pasqualina Russo ◽  
Antonino Pace ◽  
Lorena Varriale ◽  
Luca Borrelli ◽  
Antonio Gargiulo ◽  
...  

Wild birds may host and spread pathogens, integrating the epidemiology of infectious diseases. Particularly, Larus spp. have been described as responsible for the spread of many enteric diseases, primarily because of their large populations at landfill sites. The aim of this study was to examine the role of yellow-legged gulls as a source of enteropathogenic bacteria such as Campylobacter spp., Salmonella spp., Shiga toxin-producing Escherichia coli and Yersinia spp., with particular attention to antibiotic-resistant strains. Enteropathogenic bacteria were isolated from 93/225 yellow-legged gulls examined from April to July, during a four-year period (2016–2019). Specifically, Campylobacter spp. was isolated from 60/225 samples (26.7%), and identified as C. coli (36/60) and as C. jejuni (24/60). Salmonella spp. was isolated from 3/225 samples (1.3%), and identified as Salmonella arizonae. Shiga toxin-producing E. coli were isolated from 30/225 samples (13.3%) samples, and serotyped as E. coli O128 (12/30) O26 (9/30), O157 (6/30) and O11 (3/30); Yersinia spp. was never detected. Isolated strains exhibited multidrug resistance, including vitally important antibiotics for human medicine (i.e., fluoroquinolones, tetracyclines). Our study emphasizes the importance of yellow-legged gulls as potential reservoirs of pathogenic and resistant strains and their involvement in the dissemination of these bacteria across different environments, with resulting public health concerns.


1997 ◽  
Vol 60 (2) ◽  
pp. 114-119 ◽  
Author(s):  
WARREN J. DORSA ◽  
CATHERINE N. CUTTER ◽  
GREGORY R. SIRAGUSA

The fates of several bacterial populations on beef carcass surfaces were examined immediately following hot water washes (W) delivered through a beef carcass wash cabinet or application of steam-vacuum (SV). Additionally, the long-range effectiveness of W and SV on several bacterial populations was also determined during storage up to 21 days at 5°C under vacuum-packaged conditions. Fresh, unaltered bovine feces spiked with antibiotic-resistant strains of Escherichia coli O157:H7, Listeria innocua, and Clostridium sporogenes were used to inoculate beef carcass tissue prior to W or SV treatment. All treatments were equally effective as is indicated by bacterial populations immediately following any of the treatments (P > 0.05); however, the combination of SV followed by W consistently produced arithmetically greater bacterial reductions. In general, all treatments produced initial reductions of up to 2.7 log CFU/cm2 for APC, lactic acid bacteria, and L. innocua, but by 14 days bacterial numbers had increased to levels of at least 7 log CFU/cm2. E. coli O157:H7 was initially reduced by as much as 3.4 log CFU/cm2 and did not grow to original inoculation levels for the duration of the experiment. Vegetative counts of C. sporogenes were initially reduced by as much as 3.4 log CFU/cm2, and numbers continued to decline for the duration of the study. These results indicate that the use of W and SV effectively reduces bacterial populations from beef carcass tissue immediately after treatment. Additionally, storage of treated tissue up to 21 days at 5°C did not appear to offer any competitive advantage to potentially pathogenic microorganisms.


Sign in / Sign up

Export Citation Format

Share Document