scholarly journals Enhancing the 1-Aminocyclopropane-1-Carboxylate Metabolic Rate of Pseudomonas sp. UW4 Intensifies Chemotactic Rhizocompetence

2020 ◽  
Vol 8 (1) ◽  
pp. 71
Author(s):  
Xiyang Gao ◽  
Tao Li ◽  
Wenliang Liu ◽  
Yan Zhang ◽  
Di Shang ◽  
...  

1-aminocyclopropane-1-carboxylic acid (ACC) is a strong metabolism-dependent chemoattractant for the plant beneficial rhizobacterium Pseudomonas sp. UW4. It is unknown whether enhancing the metabolic rate of ACC can intensify the chemotaxis activity towards ACC and rhizocompetence. In this study, we selected four promoters to transcribe the UW4 ACC deaminase (AcdS) gene in the UW4 ΔAcdS mutant. PA is the UW4 AcdS gene promoter, PB20, PB10 and PB1 are synthetic promoters. The order of the AcdS gene expression level and AcdS activity of the four strains harboring the promoters were PB20 > PA > PB10 > PB1. Interestingly, the AcdS activity of the four strains and their parent strain UW4 was significantly positively correlated with their chemotactic activity towards ACC, rhizosphere colonization, roots elongation and dry weight promotion. The results released that enhancing the AcdS activity of PGPRenable them to achieve strong chemotactic responses to ACC, rhizocompetence and plant growth promotion.

2017 ◽  
Vol 9 (3) ◽  
pp. 1310-1316
Author(s):  
Gurjot Kaur ◽  
Poonam Sharma ◽  
Deepika Chhabra ◽  
Kailash Chand ◽  
Gurjit Singh Mangat

The present investigation was carried out to exploit bacterial endophytes associated with root and leaf tissue of rice plant for plant growth promotion (PGP) and colonization study in vitro. Total 10 endophytic bacterial isolates (Pseudomonas sp.) were evaluate for PGP traits like P solubilization, production of Indole acetic acid (IAA), siderophore, ACC deaminase, protease, cellulase, fluorescent pigment, urease and denitrification activity. Out of 10 endophytic bacteria 30 %, 60 %, 20 %, 70 %, 10 % and 10 % were positive for siderophore, protease, cellulase, fluorescent pigment, urease and denitrification respectively. Maximum IAA production was recorded with isolate LRBLE7 (18.8 μgml-1) followed by LRBRE4 (16.0 μgml-1) and maximum P-solubilization was recorded with isolate LRBRE4 (5.8 mg 100 ml-1) followed by LRBLE7 (4.4 mg 100 ml-1). ACC deaminase production was recorded with isolate LRBLE6 (O.D=0.352 nm) followed by LRBRE5 (O.D=0.324nm). Three potential isolates (LRBRE4, LRBRE6 and LRBLE7) were selected on the basis of multiple PGP traits and were subjected to colonization study of rice seedling in vitro. Potential bacterial isolates can be exploited for improving growth and productivity in rice under sustainable management system.


2014 ◽  
Vol 65 (3) ◽  
pp. 1679-1687 ◽  
Author(s):  
Venkadasamy Govindasamy ◽  
Murugesan Senthilkumar ◽  
Kannepalli Annapurna

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Shobhit Raj Vimal ◽  
Jaya Gupta ◽  
Jay Shankar Singh

This study was conducted to examine the comparative effect on wheat plant health inoculated with the two different rhizobacterial strains Bacillus sp. (JG3) and Pseudomonas sp. (JG7) under soil salinity. Total seven potential salt tolerant strains were isolated from the saline soils of BBAU-Lucknow. The bacterial strains have been investigated for nitrogen fixatation, phosphate solubilization, ammonia, indole acetic acid and hydrogen cyanide production activities. Based on morphological and biochemical activities the strains JG3 was designated as Bacillus sp. and the strain JG7 was designated as Pseudomonas sp. Both the strains witness positive for the different plant growth promoting traits. In comparison of strain JG7, strain JG3 inoculated wheat seeds enhance plant height by 32.32%, root length by 37.84%, fresh weight by 28.2% and dry weight by 15.51% in FYM amended soils. We observe in this study that seeds treated with Bacillus sp. found significantly effective in plant growth promotion compared to Pseudomonas sp. in saline soil. Based on the comparative experimental study reported herein, it is pointedly observed that the use of salt tolerant PGPRs are effective for facilitating plant health in salt stress environments


2021 ◽  
Vol 9 (12) ◽  
pp. 2467
Author(s):  
Bernard R. Glick ◽  
Francisco X. Nascimento

The expression of the enzyme 1-aminocylopropane-1-carboxylate (ACC) deaminase, and the consequent modulation of plant ACC and ethylene concentrations, is one of the most important features of plant-associated bacteria. By decreasing plant ACC and ethylene concentrations, ACC deaminase-producing bacteria can overcome some of the deleterious effects of inhibitory levels of ACC and ethylene in various aspects of plant-microbe interactions, as well as plant growth and development (especially under stressful conditions). As a result, the acdS gene, encoding ACC deaminase, is often prevalent and positively selected in the microbiome of plants. Several members of the genus Pseudomonas are widely prevalent in the microbiome of plants worldwide. Due to its adaptation to a plant-associated lifestyle many Pseudomonas strains are of great interest for the development of novel sustainable agricultural and biotechnological solutions, especially those presenting ACC deaminase activity. This manuscript discusses several aspects of ACC deaminase and its role in the increased plant growth promotion, plant protection against abiotic and biotic stress and promotion of the rhizobial nodulation process by Pseudomonas. Knowledge regarding the properties and actions of ACC deaminase-producing Pseudomonas is key for a better understanding of plant-microbe interactions and the selection of highly effective strains for various applications in agriculture and biotechnology.


1992 ◽  
Vol 38 (4) ◽  
pp. 303-308 ◽  
Author(s):  
F. B. Holl ◽  
C. P. Chanway

Lodgepole pine seed was inoculated with Bacillus polymyxa isolate L6-16R, a strain marked with antibiotic resistance to 100 mg rifamycin per litre. Inoculation resulted in statistically significant seedling biomass increases after 8 weeks of pine growth. The L6-16R rhizosphere population declined by an order of magnitude per month, from ca. 106 cfu/g dry weight of pine root tissue 4 weeks past inoculation to ca. 104 cfu/g of root tissue 12 weeks past inoculation. Seed-lings from three of four pine provenances had mean shoot and root dry weight increases of up to 35% due to seed inoculation, but shoot growth of the fourth provenance was inhibited. The size of the L6-16R rhizosphere population was not correlated to the magnitude of the shoot growth response 4 weeks after inoculation, but it showed a strong correlation with shoot growth 8 weeks after inoculation. These results indicate that the promotion of pine seedling growth may be a function of the size of the bacterial rhizosphere population that develops 4 weeks after inoculation, and that B. polymyxa may promote growth of lodgepole pine collected from many, but not all provenances. Key words: Bacillus polymyxa, lodgepole pine, growth promotion, rhizosphere colonization.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 120
Author(s):  
Guangyu Zhao ◽  
Yihui Wei ◽  
Jiaqi Chen ◽  
Yuhong Dong ◽  
Lingyu Hou ◽  
...  

Purpose: This research was aimed to screen and identify multifunctional phosphorus-dissolving bacteria of a Chinese fir (Cunninghamia lanceolata) plantation and study its phosphorus-dissolving characteristics in order to provide strain resources and a theoretical basis for developing the appropriate bacterial fertilizer of a Chinese fir plantation. Methods: First, phosphorus-dissolving bacteria were isolated from the woodland soil of a Chinese fir plantation by Pikovskava inorganic phosphorus medium (PVK). Then, some growth-promoting indicators of primary screening strains were determined, including the capacity of phosphorus-solubilized, nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, production of indole-3-acetic acid (IAA), secretion of iron carrier and so on. Finally, the screening multifunctional phosphorus-dissolving bacteria were identified, which were combined with colony characteristics, physiological and biochemical tests and molecular biotechnology. Results: (1) Thirteen phosphorus-dissolving bacteria were isolated and screened in total, and P5 (195.61 mg·L−1) had the strongest capacity of phosphorus-solubilized. Five phosphorus-dissolving bacteria were provided with nitrogenase activity, and the highest activity of nitrogenase was P10 and P5 (71.90 C2H4 nmol·mL−1·h−1 and 71.00 C2H4 nmol·mL−1·h−1, respectively). Four strains were provided with ACC deaminase activity, and the highest activity of ACC deaminase was P5 and P9, (0.74 μmol·mg−1·h−1 and 0.54 μmol·mg−1·h−1, respectively). Most strains could secrete IAA, and three strains of bacteria had a strong secretory ability, which could secrete IAA with a concentration greater than 15 mg·mL−1, and P5 was 18.00, P2 was 17.30, P6 was 15.59 (mg·mL−1). P5 produced carriers of iron better than others, and the ratio of the diameter of the iron production carrier ring to the diameter of the colony was 1.80, respectively, which was significantly higher than other strains. Combining all kinds of factors, P5 multifunctional phosphorus-dissolving bacteria were screened for eventual further study. (2) Strain P5 was identified as Burkholderia ubonensis, based on the colony characteristics, physiological and biochemical tests, 16SrDNA sequence analysis and phylogenetic tree construction. Conclusion: P5 has a variety of high-efficiency growth-promoting capabilities, and the ability to produce IAA, ACC deaminase activity and siderophore performance are significantly higher than other strains, which had great potential in the development of microbial fertilizer.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Geetha Rajendran ◽  
Maheshwari H. Patel ◽  
Sanket J. Joshi

One of the ways to increase the competitive survivability of rhizobial biofertilizers and thus achieve better plant growth under such conditions is by modifying the rhizospheric environment or community by addition of nonrhizobial nodule-associated bacteria (NAB) that cause better nodulation and plant growth when coinoculated with rhizobia. A study was performed to investigate the most commonly associated nodule-associated bacteria and the rhizospheric microorganisms associated with theFenugreek(Trigonella foenum-graecum) plant. Isolation of nonrhizobial isolates from root nodules ofFenugreekwas carried out along with the rhizospheric isolates. About 64.7% isolates obtained fromFenugreeknodules were gram-negative coccobacilli, 29.41% were gram-positive bacilli, and all rhizospheric isolates except one were gram-positive bacilli. All the isolates were characterized for their plant growth promoting (PGP) activities. Two of the NAB isolates M2N2c and B1N2b (Exiguobacterium sp.) showed maximum positive PGP features. Those NAB isolates when coinoculated with rhizobial strain—S. meliloti, showed plant growth promotion with respect to increase in plant’s root and shoot length, chlorophyll content, nodulation efficiency, and nodule dry weight.


Pathogens ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 6 ◽  
Author(s):  
Sang-Jae Won ◽  
Jun-Hyeok Kwon ◽  
Dong-Hyun Kim ◽  
Young-Sang Ahn

This study investigated the control of foliar fungal diseases and growth promotion of Camellia oleifera seedlings in coastal reclaimed land through the use of Bacillus licheniformis MH48. B. licheniformis MH48 can produce lytic enzymes chitinase and β-1,3-glucanase that can inhibit foliar pathogens by 37.4 to 50.5%. Nevertheless, foliar diseases appeared in the seedlings with bacterial inoculation, and their survival rate decreased because they were unable to withstand salt stress. However, B. licheniformis MH48 significantly increased the total nitrogen and phosphorus contents in the soils through fixing atmospheric nitrogen and solubilizing phosphorus. The growth of seedlings with bacterial inoculation increased, particularly in root dry weight, by 7.42 g plant−1, which was 1.7-fold greater than that of the control. B. licheniformis MH48 produces the phytohormone auxin, which potentially stimulates seedling root growth. C. oleifera seedlings significantly increased in total nitrogen content to 317.57 mg plant−1 and total phosphorus content to 46.86 mg plant−1. Our results revealed the effectiveness of B. licheniformis MH48 not only in the control of foliar fungal diseases but also in the growth promotion of C. oleifera seedlings in coastal lands.


2020 ◽  
Vol 11 ◽  
Author(s):  
Byung Kwon Jung ◽  
Jerald Conrad Ibal ◽  
Huy Quang Pham ◽  
Min-Chul Kim ◽  
Gun-Seok Park ◽  
...  

Quorum sensing (QS) enables bacteria to organize gene expression programs, thereby coordinating collective behaviors. It involves the production, release, and population-wide detection of extracellular signaling molecules. The cellular processes regulated by QS in bacteria are diverse and may be used in mutualistic coordination or in response to changing environmental conditions. Here, we focused on the influence of the QS-dependent genes of our model bacterial strain Serratia fonticola GS2 on potential plant growth promoting (PGP) activities including indole-3-acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, and biofilm formation. Based on genomic and phenotypic experimental data we identified and investigated the function of QS genes in the genome of the model strain. Our gene deletion study confirmed the biological functionality of the QS auto-inducer (gloI) and receptor (gloR) on potential PGP activities of GS2. A transcriptomic approach was also undertaken to understand the role of QS genes in regulation of genes primarily involved in PGP activities (IAA, ACC deaminase activity, and biofilm formation). Both transcriptomic and phenotypic data revealed that the QS-deletion mutants had considerably less PGP activities, as compared to the wild type. In addition, in vivo plant experiments showed that plants treated with GS2 had significantly higher growth rates than plants treated with the QS-deletion mutants. Overall, our results showed how QS-dependent genes regulate the potential PGP activities of GS2. This information may be helpful in understanding the relationship between QS-dependent genes and the PGP activity of bacteria, which aid in the production of practical bio-fertilizers for plant growth promotion.


Sign in / Sign up

Export Citation Format

Share Document