scholarly journals Serological survey of antibodies to Toxoplasma gondii and Coxiella burnetii in rodents in north-western African islands (Canary Islands and Cape Verde)

Author(s):  
Pilar Foronda ◽  
Josué Plata-Luis ◽  
Borja Del Castillo-Figueruelo ◽  
Ángela Fernández-Álvarez ◽  
Aarón Martín-Alonso ◽  
...  

Coxiella burnetii and Toxoplasma gondii are intracellular parasites that cause important reproductive disorders in animals and humans worldwide, resulting in high economic losses. The aim of the present study was to analyse the possible role of peridomestic small mammals in the maintenance and transmission of C. burnetii and T. gondii in the north-western African archipelagos of the Canary Islands and Cape Verde, where these species are commonly found affecting humans and farm animals. Between 2009 and 2013, 108 black rats (Rattus rattus) and 77 mice (Mus musculus) were analysed for the presence of Coxiella and Toxoplasma antibodies by enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence (IFA), respectively. Our results showed a wide distribution of C. burnetii and T. gondii, except for T. gondii in Cape Verde, in both rodent species. The overall seroprevalence of C. burnetii antibodies was 12.4%; 21.1% for Cape Verde and 10.2% for the Canary Islands. With respect to T. gondii, seropositive rodents were only observed in the Canary Islands, with an overall seroprevalence of 15%. Considering the fact that both pathogens can infect a large range of hosts, including livestock and humans, the results are of public health and veterinary importance and could be used by governmental entities to manage risk factors and to prevent future cases of Q fever and toxoplasmosis.

Author(s):  
Mohammed H. Benaissa ◽  
Samir Ansel ◽  
Abdallah Mohamed-Cherif ◽  
Karima Benfodil ◽  
Djamel Khelef ◽  
...  

Query (Q) fever is a globally distributed zoonotic disease caused by Coxiella burnetii, a bacterial agent for which ruminants are the most prevalent natural reservoir. Data regarding Q fever infection in camels in Algeria are limited. Therefore, a survey to detect seroprevalence of C. burnetii antibodies was conducted among healthy camel populations in a vast area in southeastern Algeria to determine distribution of the Q fever causative organism and to identify risk factors associated with infection. Between January and March 2016, blood samples were collected from 184 camels and serum samples were subsequently analysed using a commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit. At the time of blood collection, a questionnaire investigating 13 potential predisposing factors associated with C. burnetii seropositivity was completed for every dromedary camel and herd. Results were analysed by a chi-square (χ2) test and multivariate logistic regression. The seroprevalence of C. burnetii at the animal level was 71.2% (95% CI: 65.2–78.3) and 85.3% (95% CI: 72.8–97.8) at the herd level. At the animal level, differences in seroprevalence were observed because of herd size, animal age, animal sex, presence of ticks and contact with other herds. A multivariable logistic regression model identified three main risk factors associated with individual seropositivity: (1) age class > 11 years (OR = 8.81, 95% CI: 2.55–30.41), (2) herd size > 50 head (OR = 4.46, 95% CI: 1.01–19.59) and (3) infestation with ticks (OR 2.2; 95% CI: 1.1–4.5). This study of seroprevalence of C. burnetii infection in camels in Algeria revealed a high seroprevalence of Q fever in camel populations in southeastern Algeria and provided strong evidence that Q fever represents an economic, public health and veterinary concern. Appropriate measures should be taken to prevent the spread of C. burnetii and to reduce the risk of Q fever in farm animals and humans in this agro-ecologically and strategically important region of North Africa.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1075
Author(s):  
Salvatore Ledda ◽  
Cinzia Santucciu ◽  
Valentina Chisu ◽  
Giovanna Masala

Q fever is a zoonosis caused by Coxiella burnetii, a Gram-negative pathogen with a complex life cycle and a high impact on public and animal health all over the world. The symptoms are indistinguishable from those belonging to other diseases, and the disease could be symptomless. For these reasons, reliable laboratory tests are essential for an accurate diagnosis. The aim of this study was to validate a novel enzyme-linked immunosorbent assay (ELISA) test, named the Chorus Q Fever Phase II IgG and IgM Kit (DIESSE, Diagnostica Senese S.p.A), which is performed by an instrument named Chorus, a new device in medical diagnostics. This diagnostic test is employed for the detection of antibodies against C. burnetii Phase II antigens in acute disease. Our validation protocol was performed according to the Italian Accreditation Body (ACCREDIA) (Regulation UNI CEI EN ISO/IEC 17025:2018 and 17043:2010), OIE (World Organization for Animal Health), and Statement for Reporting Studies of Diagnostic Accuracy (STARD). Operator performance was evaluated along with the analytical specificity and sensitivity (ASp and ASe) and diagnostic accuracy of the kit, with parameters such as diagnostic specificity and sensitivity (DSp and DSe) and positive and negative predictive values (PPV and NPV), in addition to the repeatability. According to the evaluated parameters, the diagnostic ELISA test was shown to be suitable for validation and commercialization as a screening method in human sera and a valid support for clinical diagnostics.


Author(s):  
Shuaibu Gidado Adamu ◽  
Junaidu Kabir ◽  
Jarlath Udo Umoh ◽  
Mashood Abiola Raji

Abstract A cross-sectional study was carried out to determine the seroprevalence and risk factors of Q fever in sheep in the northern part of Kaduna State, Nigeria. This study aimed to determine Coxiella burnetii infection and its risk factors in sheep in Kaduna State. A total of 400 blood samples consisting of 259 samples from females and 141 from males were aseptically collected from the jugular vein of sheep from flocks in Kaduna State. The sera obtained were screened for Q fever using an indirect enzyme-linked immunosorbent assay (iELISA). The obtained data were analysed to determine whether there is a relationship between sex, age, and the animals tested. The analysis revealed that 8.0% of the sera was seropositive by iELISA. There was no significant difference in Q fever seropositivity in the study area according to the sex of sheep (P > 0.05). There was a statistically significant difference (P < 0.05) in Q fever seropositivity according to the age of sheep. This study indicated a high seroprevalence of Q fever mainly among female animals and older sheep. Further studies are required to determine the epizootiology of Q fever in the study area more precisely.


2020 ◽  
Vol 8 (8) ◽  
pp. 1235 ◽  
Author(s):  
Mareike Stellfeld ◽  
Claudia Gerlach ◽  
Ina-Gabriele Richter ◽  
Peter Miethe ◽  
Dominika Fahlbusch ◽  
...  

Coxiella burnetii is the causative agent of Q fever, a zoonosis infecting domestic ruminants and humans. Currently used routine diagnostic tools offer limited sensitivity and specificity and symptomless infected animals may be missed. Therefore, diagnostic tools of higher sensitivity and specificity must be developed. For this purpose, the C. burnetii outer membrane protein Com1 was cloned and expressed in Escherichia coli. The His-tagged recombinant protein was purified and used in an indirect enzyme-linked immunosorbent assay (ELISA). Assay performance was tested with more than 400 positive and negative sera from sheep, goats and cattle from 36 locations. Calculation of sensitivity and specificity was undertaken using receiver operating characteristic (ROC) curves. The sensitivities and specificities for sheep were 85% and 68% (optical density at 450nm, OD450 cut-off value 0.32), for goats 94% and 77% (OD450 cut-off value 0.23) and for cattle 71% and 70% (OD450 cut-off value 0.18), respectively. These results correspond to excellent, outstanding and acceptable discrimination of positive and negative sera. In summary, recombinant Com1 can provide a basis for more sensitive and specific diagnostic tools in veterinary medicine.


Author(s):  
Ayse Kilic ◽  
Hakan Kalender

Q fever is a zoonotic disease that occurs worldwide and is caused by the obligate intracellular bacterium Coxiella burnetii. Infected animals are usually asymptomatic, but infection can cause abortion and stillbirth in ruminants. The main purpose of this study was to evaluate prevalance of Coxiella burnetii infection in aborted and nonaborted sheep serum samples in Eastern Anatolia region by using enzyme-linked immunosorbent assay (ELISA). The determine of prevalance in sheep flocks from four provinces (Elazig, Malatya, Tunceli, Bitlis) and tested for anti-C.burnetii antibody detection, by means of Chekit Q fever Elisa kit. 350 serum samples obtained from flocks belonging aborted sheep showed that a total of 56 (16%) were detected seropositivity, whereas 171 serum samples obtained from nonaborted sheep flocks in 13 of the 171 (7.60%) for C.burnetii in seropositivity were observed. Coxiellosis should be considered an important cause of sheep with abortion history and nonaborted in Elazig and neighboring provinces.


2021 ◽  
pp. 2386-2391
Author(s):  
Tanjila Hasan ◽  
Abdul Mannan ◽  
Delower Hossain ◽  
Azizunnesa Rekha ◽  
Md. Monir Hossan ◽  
...  

Background and Aim: Toxoplasma gondii is a protozoan parasite that is responsible for the major cause of congenital diseases, abortion, and stillbirth in humans and farm animals. Primary infection in pregnant goats due to T. gondii leads to abortion and significant economic losses in the livestock industry. Moreover, very few studies have been performed for the identification of T. gondii from aborted fetuses of goats. The study was conducted for the molecular identification of Toxoplasma gondii from aborted fetuses of goats in Chattogram, Bangladesh. Materials and Methods: Twenty aborted fetuses of goats were collected from 52 farms in the study area. A nested polymerase chain reaction (PCR) assay targeting the B1 gene was performed, and a positive sample yield of 197 bp amplified DNA products consistent with T. gondii. Results: The overall prevalence of toxoplasmosis in the aborted fetus of goats was 35.0%. Heart muscle, liver, brain, and placenta showed positive PCR results. The risk factors related to the does age, presence of cats in farms, and aborted fetus age were found to be statistically significant (p<0.05). Our results showed that T. gondii is a major possible causal factor for abortion and reproductive failure in goats. The high prevalence of T. gondii infection in aborted fetuses of goats revealed that T. gondii could be imperative in causing reproductive failure in goats. Conclusion: Active or congenital toxoplasmosis was shown by the presence of T. gondii in fetal tissues, which is a matter of concern as this parasite has zoonotic significance and causes economic hazards to the livestock industry by causing various reproductive problems. Therefore, proper control measures and strategies are needed to reduce the rate of abortion in goats, ultimately saving the livestock industry.


Author(s):  
Attila Dobos ◽  
István Fodor ◽  
Gerda Kiss ◽  
Miklós Gyuranecz

AbstractQ fever is a disease of high zoonotic potential, but interest in its causative agent is rather low although it causes some public health problems in Hungary. The prevalence of Q fever is highly variable by country. The main reservoirs of the disease are the same domestic ruminant species everywhere, but the epidemiological profile depends on the features of the specific reservoir. The aim of this large-scale study was to demonstrate the importance of Q fever in different species as a possible source for human infection in most regions of Hungary. A total of 851 serum samples from 44 dairy farms, 16 sheep flocks, 4 goat farms and 3 zoos located in different parts of Hungary were tested. The presence of antibodies to Coxiella burnetii was surveyed in dairy cattle (n = 547), goats (n = 71), sheep (n = 200) and zoo animals (n = 33). The animal species tested in Hungary showed different seroprevalence values of C. burnetii infection. Seropositivity by the enzyme-linked immunosorbent assay was found in 258 out of 547 (47.2%) cows and in 69 out of 271 (25.5%) small ruminants, among them in 47 out of 200 (23.5%) sheep and in 22 out of 71 (31.0%) goats. Antibodies to C. burnetii were not detected in zoo animals. Seropositivity was demonstrated in 44 out of 44 (100%) dairy cattle farms, with at least one serum sample found to be positive on each farm. The seropositivity rate of small ruminant farms was 55.0% (11 positive out of 20 tested), with 9 out of 16 (56.3%) sheep flocks and 2 out of 4 (50.0%) goat herds showing seropositivity.


2019 ◽  
Vol 28 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Diego Carlos Souza Zanatto ◽  
Igor Renan Honorato Gatto ◽  
Marcelo Bahia Labruna ◽  
Marcia Mariza Gomes Jusi ◽  
Samir Issa Samara ◽  
...  

Abstract This is a cross-sectional study to assess the presence of antibodies in ruminants against selected pathogens associated with reproductive disorders in cattle in four Brazilian states, including the zoonotic agent Coxiella burnetii. The used tests were Virus Neutralization Assay for IBR and BVD, Microscopic Agglutination Test for Leptospira spp., Indirect Fluorescent Antibody Test (IFAT) for C. burnetii and Toxoplasma gondii, and Enzyme-Linked Immunosorbent Assay for Neospora caninum and Trypanosoma vivax. Seropositivity for C. burnetii was 13.7% with titers from 128 to 131,072; 57.8% for BoHV-1, with titers between 2 and 1,024; 47.1% for BVDV-1a, with titers from 10 to 5,120; 89.2% for N. caninum; 50% for T. vivax; and 52.0% for Leptospira spp., with titers between 100 to 800 (the following serovars were found: Tarassovi, Grippotyphosa, Canicola, Copenhageni, Wolffi, Hardjo, Pomona and Icterohaemorrhagiae); 19.6% for T. gondii with titer of 40. This is the first study that has identified C. burnetii in cattle associated with BoHV and BVDV, N. caninum, Leptospira spp., T. gondii and T. vivax. Thus, future studies should be conducted to investigate how widespread this pathogen is in Brazilian cattle herds.


2008 ◽  
Vol 75 (2) ◽  
pp. 428-433 ◽  
Author(s):  
Elodie Rousset ◽  
Mustapha Berri ◽  
Benoit Durand ◽  
Philippe Dufour ◽  
Myriam Prigent ◽  
...  

ABSTRACT Q fever is a zoonosis caused by Coxiella burnetii, a bacterium largely carried by ruminants and shed into milk, vaginal mucus, and feces. The main potential hazard to humans and animals is due to shedding of bacteria that can then persist in the environment and be aerosolized. The purpose of this study was to evaluate shedding after an outbreak of Q fever abortion in goat herds and to assess the relationship with the occurrence of abortions and antibody responses. Aborting and nonaborting goats were monitored by PCR for C. burnetii shedding 15 and 30 days after the abortion episodes. PCR analysis of all samples showed that 70% (n = 50) of the aborting and 53% (n = 70) of the nonaborting goats were positive. C. burnetii was shed into vaginal mucus, feces, and milk of 44%, 21%, and 38%, respectively, of goats that aborted and 27%, 20%, and 31%, respectively, of goats that delivered normally. Statistical comparison of these shedding results did not reveal any difference between these two groups. PCR results obtained for the vaginal and fecal routes were concordant in 81% of cases, whereas those for milk correlated with only 49% of cases with either vaginal or fecal shedding status. Serological analysis, using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and complement fixation tests, showed that at least 24% of the seronegative goats shed bacteria. Positive vaginal and fecal shedding, unlike positive milk shedding, was observed more often in animals that were weakly positive or negative by ELISA or IFA. Two opposite shedding trends were thus apparent for the milk and vaginal-fecal routes. Moreover, this study showed that a nonnegligible proportion of seronegative animals that delivered normally could excrete C. burnetii.


Sign in / Sign up

Export Citation Format

Share Document