scholarly journals Trichoderma harzianum Inoculation Reduces the Incidence of Clubroot Disease in Chinese Cabbage by Regulating the Rhizosphere Microbial Community

2020 ◽  
Vol 8 (9) ◽  
pp. 1325
Author(s):  
Junhui Li ◽  
Joshua Philp ◽  
Jishun Li ◽  
Yanli Wei ◽  
Hongmei Li ◽  
...  

Clubroot is a disease of cruciferous crops that causes significant economic losses to vegetable production worldwide. We applied high-throughput amplicon sequencing technology to quantify the effect of Trichodermaharzianum LTR-2 inoculation on the rhizosphere community of Chinese cabbage (Brassica rapa subsp. pekinensis cv. Jiaozhou) in a commercial production area. T. harzianum inoculation of cabbage reduced the incidence of clubroot disease by 45.4% (p < 0.05). The disease control efficacy (PDIDS) was 63%. This reduction in disease incidence and severity coincided with a drastic reduction in both the relative abundance of Plasmodiaphora brassicae, the causative pathogen of cabbage clubroot disease, and its copy number in rhizosphere soil. Pathogenic fungi Alternaria and Fusarium were also negatively associated with Trichoderma inoculation according to co-occurrence network analysis. Inoculation drastically reduced the relative abundance of the dominant bacterial genera Delftia and Pseudomonas, whilst increasing others including Bacillus. Our results demonstrate that T. harzianum LTR-2 is an effective biological control agent for cabbage clubroot, which acts through modulation of the soil and rhizosphere microbial community.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuanliang Hu ◽  
Lu Qiu ◽  
Zongjie Zhang ◽  
Kai Liu ◽  
Xian Xia ◽  
...  

Clubroot caused by Plasmodiophora brassicae is one of the most destructive diseases in cruciferous crops. Streptomyces alfalfae XY25T, a biological control agent, exhibited great ability to relieve clubroot disease, regulate rhizosphere bacterial and fungal communities in Chinese cabbage, and promote its growth in greenhouse. Therefore, field experiments were carried out to investigate the effects of S. alfalfae XY25T on clubroot and rhizosphere microbial community in Chinese cabbage. Results showed that the control efficiency of clubroot by S. alfalfae XY25T was 69.4%. Applying the agent can alleviate soil acidification; increase the contents of soil organic matter, available nitrogen, available phosphorus, and available potassium; and enhance activities of invertase, urease, catalase, and alkaline phosphatase. During Chinese cabbage growth, bacterial diversity decreased first and then increased, and fungal diversity decreased gradually after inoculation with S. alfalfae XY25T. High-throughput sequencing analysis showed that the main bacterial phyla were Proteobacteria, Bacteroidetes, Acidobacteria, and Planctomycetes, and the major fungal phyla were Ascomycota and Basidiomycota in rhizosphere soil. The dominant bacterial genera were Flavobacterium, Candidatus, Pseudomonas, Stenotrophomonas, Sphingomonas, Flavisolibacter, and Gemmatimonbacteria with no significant difference in abundance, and the major fungal genera were Monographella, Aspergillus, Hypocreales, Chytridiaceae, Fusarium, Pleosporales, Agaricales, Mortierella, and Pleosporales. The significant differences were observed among Pleosporales, Basidiomycota, Colletotrichum, two strains attributed to Agaricales, and another two unidentified fungi by using S. alfalfae XY25T. Moreover, quantitative real-time PCR results indicated that P. brassicae content was significantly decreased after the agent inoculation. In conclusion, S. alfalfae XY25T can affect rhizosphere microbial communities; therefore, applying the agent is an effective approach to reduce the damage caused by clubroot.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
YanYan Zhou ◽  
LiPing Hao ◽  
Chao Ji ◽  
QiSheng Zhou ◽  
Xin Song ◽  
...  

As the main economic crop cultivated in the Yellow River Delta, winter jujube contains various nutrients. However, soil salinization and fungal diseases have affected the yield and quality of winter jujube. In order to use plant growth-promoting rhizobacteria (PGPR) to reduce these damages, the antagonistic bacteria CZ-6 isolated from the rhizosphere of wheat in saline soil was selected for experiment. Gene sequencing analysis identified CZ-6 as Bacillus amyloliquefaciens. In order to understand the salt tolerant and disease-resistant effects of CZ-6 strain, determination of related indicators of salt tolerance, pathogen antagonistic tests, and anti-fungal mechanism analyses was carried out. A pot experiment was conducted to evaluate the effect of CZ-6 inoculation on the rhizosphere microbial community of winter jujube. The salt tolerance test showed that CZ-6 strain can survive in a medium with a NaCl concentration of 10% and produces indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. Studies on the inhibition mechanism of pathogenic fungi show that CZ-6 can secrete cellulase, protease, and xylanase. Gas chromatography-mass spectrometry (GC-MS) analysis showed that CZ-6 can release volatile organic compounds (VOCs), including 2-heptanone and 2-nonanone. In addition, the strain can colonize the rhizosphere and migrate to the roots, stems, and leaves of winter jujube, which is essential for plant growth or defense against pathogens. Illumina MiSeq sequencing data indicated that, compared to the control, the abundance of salt-tolerant bacteria Tausonia in the CZ-6 strain treatment group was significantly increased, while the richness of Chaetomium and Gibberella pathogens was significantly reduced. Our research shows that CZ-6 has the potential as a biological control agent in saline soil. Plant damage and economic losses caused by pathogenic fungi and salt stress are expected to be alleviated by the addition of salt-tolerant antagonistic bacteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaohui Wang ◽  
Chao Ji ◽  
Xin Song ◽  
Zhaoyang Liu ◽  
Yue Liu ◽  
...  

Biocontrol by inoculation with beneficial microbes is a proven strategy for reducing the negative effect of soil-borne pathogens. We evaluated the effects of microbial inoculants BIO-1 and BIO-2 in reducing soil-borne wheat diseases and in influencing wheat rhizosphere microbial community composition in a plot test. The experimental design consisted of three treatments: (1) Fusarium graminearum F0609 (CK), (2) F. graminearum + BIO-1 (T1), and (3) F. graminearum F0609 + BIO-2 (T2). The results of the wheat disease investigation showed that the relative efficacies of BIO-1 and BIO-2 were up to 82.5% and 83.9%, respectively. Illumina MiSeq sequencing revealed that bacterial abundance and diversity were significantly higher ( P < 0.05 ) in the treatment groups (T1 and T2) than in the control, with significantly decreased fungal diversity in the T2 group. Principal coordinates and hierarchical clustering analyses revealed that the bacterial and fungal communities were distinctly separated between the treatment and control groups. Bacterial community composition analysis demonstrated that beneficial microbes, such as Sphingomonas, Bacillus, Nocardioides, Rhizobium, Streptomyces, Pseudomonas, and Microbacterium, were more abundant in the treatment groups than in the control group. Fungal community composition analysis revealed that the relative abundance of the phytopathogenic fungi Fusarium and Gibberella decreased and that the well-known beneficial fungi Chaetomium, Penicillium, and Humicola were more abundant in the treatment groups than in the control group. Overall, these results confirm that beneficial microbes accumulate more easily in the wheat rhizosphere following application of BIO-1 and BIO-2 and that the relative abundance of phytopathogenic fungi decreased compared with that in the control group.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1546
Author(s):  
Marta Budziszewska ◽  
Patryk Frąckowiak ◽  
Aleksandra Obrępalska-Stęplowska

Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 373
Author(s):  
Siti Fairuz Yusoff ◽  
Farah Farhanah Haron ◽  
Norhayu Asib ◽  
Mahmud Tengku Muda Mohamed ◽  
Siti Izera Ismail

Postharvest fruits including tomatoes are commonly infected by gray mold disease resulting in significant economic losses in the fruit industry. Therefore, this study aimed to develop botanical fungicide derived from Vernonia amygdalina leaf extract to control gray mold on tomato. The emulsion formulation containing surfactant, oil carrier and water was optimized at different non-ionic alkyl polyglucoside surfactants through eleven combinations of oil to surfactant ratio (0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and 10:0 w/w). From eight selected formulations, two formulations, F5 and F7 showed stable in storage, remarkable thermodynamic stability, smaller particle size (66.44 and 139.63 nm), highly stable in zeta potential (−32.70 and −31.70 mV), low in polydispersity index (0.41 and 0.40 PdI), low in viscosity (4.20 and 4.37 cP) and low in surface tension (27.62 and 26.41 mN/m) as compared to other formulations. In situ antifungal activity on tomato fruits showed F5 formulation had a fungicidal activity against B. cinerea with zero disease incidence and severity, whereas F7 formulation reduced 62.5% disease incidence compared to a positive control with scale 1. Based on these findings, F5 formulation exhibited pronounced antifungal activity and may contribute to the development of new and safe antifungal product against gray mold on tomato.


Sign in / Sign up

Export Citation Format

Share Document