scholarly journals Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages

2021 ◽  
Vol 9 (2) ◽  
pp. 280
Author(s):  
Reetta Penttinen ◽  
Cindy Given ◽  
Matti Jalasvuori

Antibiotic resistance genes of important Gram-negative bacterial pathogens are residing in mobile genetic elements such as conjugative plasmids. These elements rapidly disperse between cells when antibiotics are present and hence our continuous use of antimicrobials selects for elements that often harbor multiple resistance genes. Plasmid-dependent (or male-specific or, in some cases, pilus-dependent) bacteriophages are bacterial viruses that infect specifically bacteria that carry certain plasmids. The introduction of these specialized phages into a plasmid-abundant bacterial community has many beneficial effects from an anthropocentric viewpoint: the majority of the plasmids are lost while the remaining plasmids acquire mutations that make them untransferable between pathogens. Recently, bacteriophage-based therapies have become a more acceptable choice to treat multi-resistant bacterial infections. Accordingly, there is a possibility to utilize these specialized phages, which are not dependent on any particular pathogenic species or strain but rather on the resistance-providing elements, in order to improve or enlengthen the lifespan of conventional antibiotic approaches. Here, we take a snapshot of the current knowledge of plasmid-dependent bacteriophages.

2017 ◽  
Vol 1 (1) ◽  
pp. 10-17
Author(s):  
Danuta Plotnikava ◽  
Anastasiya Sidarenka ◽  
Galina Novik

Abstract Extensive use of antibiotics in medicine, veterinary practice and animal husbandry has promoted the development and dissemination of bacterial drug resistance. The number of resistant pathogens causing common infectious diseases increases rapidly and creates worldwide public health problem. Commensal bacteria, including lactic acid bacteria of genera Enterococcus and Lactococcus colonizing gastrointestinal and urogenital tracts of humans and animals may act as vehicles of antibiotic resistance genes similar to those found in pathogens. Lactococci and enterococci are widely used in manufacturing of fermented products and as probiotics, therefore monitoring and control of transmissible antibiotic resistance determinants in industrial strains of these microorganisms is necessary to approve their Qualified Presumption of Safety status. Understanding the nature and molecular mechanisms of antibiotic resistance in enterococci and lactococci is essential, as intrinsic resistant bacteria pose no threat to environment and human health in contrast to bacteria with resistance acquired through horizontal transfer of resistance genes. The review summarizes current knowledge concerning intrinsic and acquired antibiotic resistance in Lactococcus and Enterococcus genera, and discusses role of enterococci and lactococci in distribution of this feature.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 688
Author(s):  
Shashi B. Kumar ◽  
Shanvanth R. Arnipalli ◽  
Ouliana Ziouzenkova

Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.


2019 ◽  
Author(s):  
Marinelle Rodrigues ◽  
Sara W. McBride ◽  
Karthik Hullahalli ◽  
Kelli L. Palmer ◽  
Breck A. Duerkop

AbstractThe innovation of new therapies to combat multidrug-resistant (MDR) bacteria is being outpaced by the continued rise of MDR bacterial infections. Of particular concern are hospital-acquired infections (HAIs) recalcitrant to antibiotic therapies. The Gram-positive intestinal pathobiontEnterococcus faecalisis associated with HAIs and some strains are MDR. Therefore, novel strategies to controlE. faecalispopulations are needed. We previously characterized anE. faecalisType II CRISPR-Cas system and demonstrated its utility in the sequence-specific removal of antibiotic resistance determinants. Here we present work describing the adaption of this CRISPR-Cas system into a constitutively expressed module encoded on a pheromone-responsive conjugative plasmid that efficiently transfers toE. faecalisfor the selective removal of antibiotic resistance genes. Usingin vitrocompetition assays, we show that these CRISPR-Cas-encoding delivery plasmids, or CRISPR-Cas antimicrobials, can reduce the occurrence of antibiotic resistance in enterococcal populations in a sequence-specific manner. Furthermore, we demonstrate that deployment of CRISPR-Cas antimicrobials in the murine intestine reduces the occurrence of antibiotic-resistantE. faecalisby several orders of magnitude. Finally, we show thatE. faecalisdonor strains harboring CRISPR-Cas antimicrobials are immune to uptake of antibiotic resistance determinantsin vivo. Our results demonstrate that conjugative delivery of CRISPR-Cas antimicrobials may be adaptable for future deployment from probiotic bacteria for exact targeting of defined MDR bacteria or for precision engineering of polymicrobial communities in the mammalian intestine.ImportanceCRISPR-Cas nucleic acid targeting systems hold promise for the amelioration of multidrug-resistant enterococci, yet the utility of such tools in the context of the intestinal environment where enterococci reside is understudied. We describe the development of a CRISPR-Cas antimicrobial, deployed on a conjugative plasmid, for the targeted removal of antibiotic resistance genes from intestinalEnterococcus faecalis. We demonstrate that CRISPR-Cas targeting reduces antibiotic resistance ofE. faecalisby several orders of magnitude in the intestine. Although barriers exist that influence the penetrance of the conjugative CRISPR-Cas antimicrobial among target recipientE. faecaliscells, the removal of antibiotic resistance genes inE. faecalisupon uptake of the CRISPR-Cas antimicrobial is absolute. In addition, cells that obtain the CRISPR-Cas antimicrobial are immunized against the acquisition of new antibiotic resistance genes. This study suggests a potential path toward plasmid based CRISPR-Cas therapies in the intestine.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Noha Ahmed Abd Alfadil ◽  
Malik Suliman Mohamed ◽  
Manal M. Ali ◽  
El Amin Ibrahim El Nima

Background. Banknotes are one of the most exchangeable items in communities and always subject to contamination by pathogenic bacteria and hence could serve as vehicle for transmission of infectious diseases. This study was conducted to assess the prevalence of contamination by pathogenic bacteria in Sudanese banknotes, determine the susceptibility of the isolated organisms towards commonly used antibiotics, and detect some antibiotic resistance genes.Methods. This study was carried out using 135 samples of Sudanese banknotes of five different denominations (2, 5, 10, 20, and 50 Sudanese pounds), which were collected randomly from hospitals, food sellers, and transporters in all three districts of Khartoum, Bahri, and Omdurman. Bacterial prevalence was determined using culture-based techniques, and their sensitivity patterns were determined using the Kirby–Bauer disk diffusion method. Genotypic identification was carried out using PCR and 16S rDNA sequencing. Antibiotic resistance genes of some isolates were detected using PCR technique.Results. All Sudanese banknotes were found to be contaminated with pathogenic bacteria.Klebsiella pneumoniaewas found to be the most frequent isolate (23%), whereasBacillus mycoides(15%) was the most abundant Gram-positive isolate. There was a significant relationship between the number of isolates and the banknote denomination withpvalue <0.05 (the lower denomination showed higher contamination level). Our study has isolated bacteria that are resistant to penicillins and cephalosporins. Multidrug-resistant strains harboring resistant genes (mecA,blaCTX-M, andblaTEM) were also detected.Conclusion. All studied Sudanese banknotes were contaminated with pathogenic bacteria, including multidrug-resistant strains, and may play a significant role in the transmission of bacterial infections.


2019 ◽  
Vol 7 (9) ◽  
pp. 326 ◽  
Author(s):  
Jane Turton ◽  
Frances Davies ◽  
Jack Turton ◽  
Claire Perry ◽  
Zoë Payne ◽  
...  

Virulence plasmids are associated with hypervirulent types of Klebsiella pneumoniae, which generally do not carry antibiotic resistance genes. In contrast, nosocomial isolates are often associated with resistance, but rarely with virulence plasmids. Here, we describe virulence plasmids in nosocomial isolates of “high-risk” clones of sequence types (STs) 15, 48, 101, 147 and 383 carrying carbapenemase genes. The whole genome sequences were determined by long-read nanopore sequencing. The 12 isolates all contained hybrid plasmids containing both resistance and virulence genes. All carried rmpA/rmpA2 and the aerobactin cluster, with the virulence plasmids of two of three representatives of ST383 carrying blaNDM-5 and seventeen other resistance genes. Representatives of ST48 and ST15 had virulence plasmid-associated genes distributed between two plasmids, both containing antibiotic resistance genes. Representatives of ST101 were remarkable in all sharing virulence plasmids in which iucC and terAWXYZ were missing and iucB and iucD truncated. The combination of resistance and virulence in plasmids of high-risk clones is extremely worrying. Virulence plasmids were often notably consistent within a lineage, even in the absence of epidemiological links, suggesting they are not moving between types. However, there was a common segment containing multiple resistance genes in virulence plasmids of representatives of both STs 48 and 383.


2020 ◽  
Vol 35 (4) ◽  
pp. 371-378 ◽  
Author(s):  
Anand Prakash Maurya ◽  
Jina Rajkumari ◽  
Amitabha Bhattacharjee ◽  
Piyush Pandey

AbstractBacterial pathogens resistant to multiple antibiotics are emergent threat to the public health which may evolve in the environment due to the co-selection of antibiotic resistance, driven by poly aromatic hydrocarbons (PAHs) and/or heavy metal contaminations. The co-selection of antibiotic resistance (AMR) evolves through the co-resistance or cross-resistance, or co-regulatory mechanisms, present in bacteria. The persistent toxic contaminants impose widespread pressure in both clinical and environmental setting, and may potentially cause the maintenance and spread of antibiotic resistance genes (ARGs). In the past few years, due to exponential increase of AMR, numerous drugs are now no longer effective to treat infectious diseases, especially in cases of bacterial infections. In this mini-review, we have described the role of co-resistance and cross-resistance as main sources for co-selection of ARGs; while other co-regulatory mechanisms are also involved with cross-resistance that regulates multiple ARGs. However, co-factors also support selections, which results in development and evolution of ARGs in absence of antibiotic pressure. Efflux pumps present on the same mobile genetic elements, possibly due to the function of Class 1 integrons (Int1), may increase the presence of ARGs into the environment, which further is promptly changed as per environmental conditions. This review also signifies that mutation plays important role in the expansion of ARGs due to presence of diverse types of anthropogenic pollutants, which results in overexpression of efflux pump with higher bacterial fitness cost; and these situations result in acquisition of resistant genes. The future aspects of co-selection with involvement of systems biology, synthetic biology and gene network approaches have also been discussed.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2753
Author(s):  
Amarela Terzić-Vidojević ◽  
Katarina Veljović ◽  
Nikola Popović ◽  
Maja Tolinački ◽  
Nataša Golić

The present study is focused on the safety, technological characteristics, and probiotic evaluation of Enterococcus species from different artisanal raw milk dairy products, mainly cheeses with ripening. Apart from proteolytic and lipolytic activities, most enterococci show the ability to metabolize citrate and convert it to various aromatic compounds. Long-ripened cheeses therefore have a specific flavor that makes them different from cheeses produced from thermally treated milk with commercial starter cultures. In addition, enterococci are producers of bacteriocins effective against spoilage and pathogenic bacteria, so they can be used as food preservatives. However, the use of enterococci in the dairy industry should be approached with caution. Although originating from food, enterococci strains may carry various virulence factors and antibiotic-resistance genes and can have many adverse effects on human health. Still, despite their controversial status, the use of enterococci in the food industry is not strictly regulated since the existence of these so-called desirable and undesirable traits in enterococci is a strain-dependent characteristic. To be specific, the results of many studies showed that there are some enterococci strains that are safe for use as starter cultures or as probiotics since they do not carry virulence factors and antibiotic-resistance genes. These strains even exhibit strong health-promoting effects such as stimulation of the immune response, anti-inflammatory activity, hypocholesterolemic action, and usefulness in prevention/treatment of some diseases.


2018 ◽  
Author(s):  
German M. Traglia ◽  
Kori Place ◽  
Cristian Dotto ◽  
Jennifer S. Fernandez ◽  
Camila dos Santos Bahiense ◽  
...  

ABSTRACTAcinetobacter baumanniiis a human pathogen that frequently acquires antibiotic resistance genes leading to the emergence of multi-drug-resistant (MDR) strains. To investigate the role of transformation in the acquisition of resistance determinants by this species, the susceptible strain A118 was exposed to genomic DNA of carbapenem-resistantKlebsiella pneumoniae(CRKp). Resistant transformants were obtained and an increase in the resistance level to all β-lactam antibiotics was observed. Whole genome analysis of transformant clones demonstrated the acquisition of CRKp DNA. The most frequently acquired genes correspond to mobile elements, antibiotic resistance genes, and operons involved in metabolism. Bioinformatic analyses andin silicogene flow prediction strengthen our findings, showing that a continuing exchange of genetic material betweenA. baumanniiandK. pneumoniaeoccurs when they share the same niche. Our results reinforce the idea that natural transformation may play a key role in the increasing emergence ofA. baumanniiMDR.IMPORTANCESince the characterization of antibiotic resistance in the late ‘50s, antibiotic resistance propagation was classically associated with horizontal gene transfer (HGT) mediated by plasmids bearing multiple resistance genes. Here we show that, at least in the human pathogenA. baumannii, transformation also plays a major role in the acquisition of antibiotic resistance determinants. This study unravels that at least for certain pathogens the propagation of resistance genes occurs by alternative HGT mechanisms which in the past have been unappreciated.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 909
Author(s):  
Qu ◽  
Cheng ◽  
Chen ◽  
Li ◽  
Zhao ◽  
...  

The study investigated the effects of dietary zeolite supplementation as an antibiotic alternative on growth performance, intestinal integrity, and cecal antibiotic resistance genes abundances of broilers. One-day-old chicks were assigned into three groups and fed a basal diet or a basal diet supplemented with antibiotics (50 mg/kg) or zeolite (10 g/kg). Antibiotic or zeolite increased (p < 0.05) average daily gain (ADG) from 1 to 42 days and duodenal villus height to crypt depth ratio (VH:CD) at 21 days. Zeolite increased (p < 0.05) ADG and average daily feed intake from 1 to 21 days, jejunal VH:CD at 21 and 42 days, ileal VH and VH:CD at 42 days, zonula occludens-1 mRNA abundance at 21 days, and duodenal occludin mRNA abundance at 42 days, whereas reduced (p < 0.05) jejunal CD and malondialdehyde levels in ileum at 21 days and duodenum at 42 days, serum D-lactic acid and diamine oxidase levels at 42 days, and plasma lipopolysaccharide content at 21 and 42 days. Antibiotics reduced (p < 0.05) duodenal claudin-2 mRNA abundance at 21 days, whereas increased (p < 0.05) cecal tetB abundance at 42 days. These findings suggested that the beneficial effects of zeolite in broilers were more pronounced than that of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document