scholarly journals Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health

2021 ◽  
Vol 9 (6) ◽  
pp. 1122
Author(s):  
Mélanie Bourgin ◽  
Aicha Kriaa ◽  
Héla Mkaouar ◽  
Vincent Mariaule ◽  
Amin Jablaoui ◽  
...  

The gut microbiota has been increasingly linked to metabolic health and disease over the last few decades. Several factors have been suggested to be involved in lipid metabolism and metabolic responses. One mediator that has gained great interest as a clinically important enzyme is bile salt hydrolase (BSH). BSH enzymes are widely distributed in human gastrointestinal microbial communities and are believed to play key roles in both microbial and host physiology. In this review, we discuss the current evidence related to the role of BSHs in health and provide useful insights that may pave the way for new therapeutic targets in human diseases.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yan-Jun He ◽  
Chong-Ge You

Due to changes in lifestyle, diet structure, and aging worldwide, the incidence of metabolic syndromes such as hyperlipidemia, hypertension, diabetes, and obesity is increasing. Metabolic syndrome is considered to be closely related to cardiovascular disease and severely affects human health. In recent years, researchers have revealed that the gut microbiota, through its own or interacting metabolites, has a positive role in regulating metabolic syndrome. Therefore, the gut microbiota has been a new “organ” for the treatment of metabolic syndrome. The role has not been clarified, and more research is necessary to prove the specific role of specific strains. Probiotics are also believed to regulate metabolic syndromes by regulating the gut microbiota and are expected to become a new preparation for treating metabolic syndromes. This review focuses on the regulation of lipid metabolism disorders by the gut microbiota through the effects of bile acids (BA), short-chain fatty acids (SCFAs), bile salt hydrolase (BSH), and genes such as ABCG5 and ABCG8, FXR, NPC1L, and LDL-R.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-13
Author(s):  
Julia Moor ◽  
Tsering Wüthrich ◽  
Suzanne Aebi ◽  
Nadezda Mostacci ◽  
Gudrun Overesch ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fernando Naya-Català ◽  
Giulia A. Wiggers ◽  
M. Carla Piazzon ◽  
Manuel I. López-Martínez ◽  
Itziar Estensoro ◽  
...  

This study aimed to highlight the relationship between diet, animal performance and mucosal adherent gut microbiota (anterior intestine) in fish fed plant-based diets supplemented with an egg white hydrolysate (EWH) with antioxidant and anti-obesogenic activity in obese rats. The feeding trial with juveniles of gilthead sea bream (Sparus aurata) lasted 8 weeks. Fish were fed near to visual satiety with a fish meal (FM)/fish oil (FO) based diet (CTRL) or a plant-based diet with/without EWH supplementation. Specific growth rate decreased gradually from 2.16% in CTRL fish to 1.88% in EWH fish due to a reduced feed intake, and a slight impairment of feed conversion ratio. Plant-based diets feeding triggered a hyperplasic inflammation of the anterior intestine regardless of EWH supplementation. However, EWH ameliorated the goblet cell depletion, and the hepatic and intestinal lipid accumulation induced by FM/FO replacement. Illumina sequencing of gut mucosal microbiota yielded a mean of 136,252 reads per sample assigned to 2,117 OTUs at 97% identity threshold. The bacterial diversity was similar in all groups, but a significantly lower richness was found in EWH fish. At the phylum level, Proteobacteria reached the highest proportion in CTRL and EWH fish, whereas Firmicutes were decreased and Actinobacteria increased with the FM/FO replacement. The proportion of Actinobacteria was restored by dietary EWH supplementation, which also triggered a highest amount of Bacteroidetes and Spirochaetes. At a closer look, a widespread presence of Lactobacillales among groups was found. Otherwise, polysaccharide hydrolases secretors represented by Corynebacterium and Nocardioides were increased by the FM/FO replacement, whereas the mucin-degrading Streptococcus was only raised in fish fed the plant-based diet without EWH. In addition, in EWH fish, a higher abundance of Propionibacterium was related to an increased concentration of intestinal propionate. The antagonism of gut health-promoting propionate with cholesterol could explain the inferred underrepresentation of primary bile acid biosynthesis and steroid degradation pathways in the EWH fish microbiota. Altogether, these results reinforce the central role of gut microbiota in the regulation of host metabolism and lipid metabolism in particular, suggesting a role of the bioactive EWH peptides as an anti-obesity and/or satiety factor in fish.


Small Methods ◽  
2019 ◽  
Vol 4 (7) ◽  
pp. 1900604
Author(s):  
Kai Wang ◽  
Xianyi Liang ◽  
Yanli Pang ◽  
Changtao Jiang

Author(s):  
Khrystyna Kvit ◽  
Viacheslav Kharchenko

 Researchers have studied the connection between cholesterol and microbiota for a long time. The results of widely published data demonstrate that the relationship between the lipid balance of the blood and the composition of the intestinal microbiota is apparent. The oblective of this study was, we tried to find the path through which this connection is carried out. Furthermore, the aim was to analyze the studies, which demonstrate the decrease of blood lipids as the result of different prebiotics and probiotics prescribtion. Also, the screening of different data from previous years was done for comparing the changes in the pathogenesis.


2020 ◽  
Vol 21 (5) ◽  
pp. 1798 ◽  
Author(s):  
Gerrit M. Grosse ◽  
Edzard Schwedhelm ◽  
Hans Worthmann ◽  
Chi-un Choe

The amino acid L-arginine serves as substrate for the nitric oxide synthase which is crucial in vascular function and disease. Derivatives of arginine, such as asymmetric (ADMA) and symmetric dimethylarginine (SDMA), are regarded as markers of endothelial dysfunction and have been implicated in vascular disorders. While there is a variety of studies consolidating ADMA as biomarker of cerebrovascular risk, morbidity and mortality, SDMA is currently emerging as an interesting metabolite with distinct characteristics in ischemic stroke. In contrast to dimethylarginines, homoarginine is inversely associated with adverse events and mortality in cerebrovascular diseases and might constitute a modifiable protective risk factor. This review aims to provide an overview of the current evidence for the pathophysiological role of arginine derivatives in cerebrovascular ischemic diseases. We discuss the complex mechanisms of arginine metabolism in health and disease and its potential clinical implications in diverse aspects of ischemic stroke.


2017 ◽  
Vol 398 (4) ◽  
pp. 425-440 ◽  
Author(s):  
Donna M. Small ◽  
Declan F. Doherty ◽  
Caoifa M. Dougan ◽  
Sinéad Weldon ◽  
Clifford C. Taggart

Abstract Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.


2018 ◽  
Vol 31 (03) ◽  
pp. 192-198 ◽  
Author(s):  
Grace Chen

AbstractThere is increasing evidence that the gut microbiome, which consists of trillions of microbes representing over 1,000 species of bacteria with over 3 million genes, significantly impacts intestinal health and disease. The gut microbiota not only is capable of promoting intestinal homeostasis and antitumor responses but can also contribute to chronic dysregulated inflammation as well as have genotoxic effects that lead to carcinogenesis. Whether the gut microbiota maintains health or promotes colon cancer may ultimately depend on the composition of the gut microbiome and the balance within the microbial community of protective and detrimental bacterial populations. Disturbances in the normal balanced state of a healthful microbiome, known as dysbiosis, have been observed in patients with colorectal cancer (CRC); however, whether these alterations precede and cause CRC remains to be determined. Nonetheless, studies in mice strongly suggest that the gut microbiota can modulate susceptibility to CRC, and therefore may serve as both biomarkers and therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document