scholarly journals Modes of Occurrence and Origin of Minerals in Permian Coals from the Huainan Coalfield, Anhui, China

Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 399
Author(s):  
Yuan Li ◽  
Wenhui Huang ◽  
Bo Jiu ◽  
Qilong Sun ◽  
Qingsong Che

Minerals in coal provide useful information for not only paleo-environments of peat accumulation, but also for geological evolution during later diagenesis and/or epigenesis. This paper reports new data on coal quality and the mineralogical and geochemical compositions of 17 unaltered (by intrusion) coal samples collected from the Huainan coalfield, providing new insight into the origins and modes of occurrence of the minerals in coal and their geological evolution. The results showed that the studied coal samples were low rank bituminous coal, with low ash yield (11.92–38.31%, average 24.80%) and high volatile content (25.13–43.43%, average 37.29%). Minerals in the coal mainly included kaolinite and quartz; varying proportions of calcite, siderite, ankerite, and pyrite; and traces of chlorite, zircon, strontianite, apatite, and gorceixite. Typical modes of mineral occurrence could be used to determine the formation stage of minerals. The detrital mineral, occurring as sub-angular to rounded discrete fragments or thin layers intimately admixed with organic matter at particular horizons, was of terrigenous origin, deposited during peat accumulation. Cell infillings, as well as nodule siderites and polycrystalline aggregates of pyrite, precipitated during the syngenetic to early diagenetic stages. Cleat infillings, compressed cell infillings, and fracture infillings precipitated in the epigenetic stage. However, the stage of mineral formation of the pore infilling was difficult to determine. Combined with coal quality, mineralogy, and geochemical analysis, the sedimentary environment of Shanxi Formation was affected by seawater, and Fe-rich hydrothermal fluids filled into the No. 3 coal seam in the epigenetic stage. The sedimentary environment of the No. 8 coal seam had widespread reduction and acid conditions due to basin subsidence, and sulfate-rich hydrothermal fluids may have been formed during the peat deposition stage. In contrast, the peat accumulation environment of the Upper Shihezi Formation was oxidized with a low pH condition. Alkaline fluid then flowed into the No. 13-1 coal seam in the epigenetic stage.

2015 ◽  
Vol 19 (4) ◽  
pp. 1423-1428 ◽  
Author(s):  
Bin Yu ◽  
Ru Zhang ◽  
Ming-Zhong Gao ◽  
Guo Li ◽  
Ze-Tian Zhang ◽  
...  

Numerical study of mining-induced stress evolution of coal during the top coal caving process under different coal seam thicknesses is carried out, and the numerical prediction agrees well with the field test data. Main characters on stress distribution and dangerous area are elucidated. For the same coal quality, coal layers under 7 m thick fail earlier than thicker coal layers; correspondingly, the internal fracture networks of thin layers are more easily developed. During the mining of a coal layer less than 7 m thick, stress monitoring of the ?dangerous area? in the middle of the top coal should be emphasized, whereas during the mining of coal layers less than 11 m thick, stress monitoring of the ?dangerous area? at the bottom of the top coal should be highlighted. The research is to optimize caving technique and extraction process.


2021 ◽  
Vol 13 (1) ◽  
pp. 166-187
Author(s):  
Hao Liu ◽  
Chan Wang ◽  
Yong Li ◽  
Jianghong Deng ◽  
Bin Deng ◽  
...  

Abstract The black rock series in the Qiongzhusi Formation contains important geochemical information about the early Cambrian tectonic and ecological environment of the southwestern Yangtze Block. In this paper, major, trace, and rare earth element data are presented in an attempt to reveal the sediment source during the deposition of the early Cambrian Qiongzhusi Formation and to reconstruct the sedimentary tectonic environment and weathering intensity during that time. The basin primarily received continental clastic material with neutral-acidic igneous rocks from a stable source and with a moderate level of maturity during the depositional period of the Qiongzhusi Formation. Furthermore, the strata were weakly influenced by submarine hydrothermal fluids during diagenesis. The reconstruction of the sedimentary environment and weathering intensity shows that P2O5 enrichment and water body stratification occurred due to the effects of upwelling ocean currents during the depositional period of the Qiongzhusi Formation. The combination of upwelling and bottom-water hydrothermal fluids led to environmental changes in the study area, from dry and hot to moist and warm. Last, the reconstruction of the tectonic environment of the Qiongzhusi Formation indicates that deposition occurred in continental slope and marginal marine environments associated with a continental arc tectonic system. These findings provide an essential basis for the comprehensive reconstruction of the early Cambrian sedimentary environment of the Yangtze Block.


Author(s):  
Guangqing Hu ◽  
Guijian Liu ◽  
Dun Wu ◽  
Wenyong Zhang ◽  
Biao Fu

AbstractBased on analysis of a large data set and supplementary sampling and analysis for hazardous trace elements in coal samples from the Huainan Coalfield, a generalized contrast-weighted scale index method was used to establish a model to evaluate the grade of coal cleanliness and its regional distribution in the main coal seam (No. 13-1) The results showed that: (1) The contents of Cr, Mn and Ni in the coal seam are relatively high and the average values are greater than 20 μg/g. The contents of Se and Hg are at a high level while most other trace elements are at normal levels. (2) The cleanliness grade of the coal seam is mainly grade III–IV, which corresponds to a relatively good-medium coal cleanliness grade. However, some parts of the seam are at grade V (relatively poor coal cleanliness). (3) Coal of relatively good cleanliness grade (grade III) is distributed mainly in the regions corresponding to the Zhuji-Dingji-Gubei coal mines and in the eastern periphery of the Panji coal mine. Coal of medium cleanliness (grade IV) is distributed mainly in the regions of the Panji-Xiejiaji and Kouzidong coalmines. Relatively poor grade coal (grade V) is distributed in the southwest regions of the coalfield and the contents of Cr, As and Hg in coal collected from the relatively poor coal cleanliness regions often exceed the regulatory standards for the maximum concentration limits.


2021 ◽  
Author(s):  
Jingyu Jiang ◽  
Ke Zhao ◽  
Yuanping Cheng ◽  
Shaojie Zheng ◽  
Shuo Zhang ◽  
...  

Abstract To study the effect of magma intrusion on the thermal evolution of low-rank coal with high water content, the mathematical relationship between water content variation and thermal conductivity of low-rank coal was analyzed by COMSOL Multiphysics numerical simulation and field validation. Taking Daxing Mine in Tiefa coalfield as the research background, the effects of magma finite time intrusion mechanism and water volatilization in coal on thermal evolution and organic maturity of coal seam are investigated in this paper. The results show that as the sill thickness increases, the thermal evolution temperature of the coal seam increases, the required thermal evolution time increases and the final retention temperature increases after the coal seam is cooled down. Approaching the magma, the maximum temperature that the coal seam can reach increases, the maximum temperature lasts longer, and the final temperature retained by the coal seam becomes higher. The increase of water content of coal makes the thermal conductivity increase, and the rate of heat transfer from coal seam is accelerated, and more heat is transferred to distant places in the same time. At the same time, the heat lost by the magma in the same time increases, the time required for the cooling of the magma decreases, and the maximum temperature reached by the underlying coal seam is significantly lower. The presence of moisture weakens the thermal evolution of the magma to the coal seam and reduces the expected maturity of the coal. The results of average random vitrinite reflectance (Ro) and moisture examination of coal samples collected at the Daxing Mine site verified the numerical simulation results of magma thermal evolution.


2020 ◽  
Vol 7 (4) ◽  
pp. 662-675
Author(s):  
Dun Wu ◽  
Wenyong Zhang ◽  
Guijian Liu ◽  
Run Zhan ◽  
Guangqing Hu

AbstractHN-1# is the first fully working coring well of the Taiyuan Formation (Ty) in the Huinan Coalfield and exploration studies are currently underway on the associated resources of the coal-bearing strata. The HN-1# well is located in the Fufeng thrust nappe structural belt in the south of the Huainan Coalfield. Three coal samples from the Ty were collected from HN-1# and inductively-coupled plasma mass spectrometry and inductively-coupled plasma atomic emission spectrometry were used to determine the Ge content of each sample. Based on proximate and ultimate analyses, microscopy data, and analyses of the ash products, some important findings were made. The Ty coal samples had a relatively high total sulfur (St,d) content (4.24%), thus the coal was considered to be a lower ranked coal (high volatility bituminous coal), which also had a low coal ash composition index (k, 1.87). Collodetrinite was the main submaceral of the Ty coal. Small amounts of pyrite particles were found in the coal seams of the Ty, while the contents of pyrite and algae in the top and bottom sections of the coal seam were relatively high, which meant that the swampy peat conditions which existed during the formation of the coal seams were affected by seawater; also the degree of mineralization of the coal seam was relatively high, which is consistent with reducing conditions in a coastal environment setting. Atomic force microscopy (AFM) experiments showed that the modes of occurrence of Ge in the Ty coal were mainly those for organic-bound and adsorbed Ge species. The organic carbon isotope values for the Ty coal ranged from − 24.1‰ to − 23.8‰, with an average value of − 24.0‰, which is equivalent to the value for terrestrial plants (average value − 24.0‰). The Ge content of the Ty coal was 13.57 mg/kg. The Ge content was negatively correlated with volatile matter and the ash yield.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 521
Author(s):  
Yingchun Wei ◽  
Wenbo He ◽  
Guohong Qin ◽  
Maohong Fan ◽  
Daiyong Cao

Lithium (Li) is an important strategic resource, and with the increasing demand for Li, there are some limitations in the exploitation and utilization of conventional deposits such as the pegmatite-type and brine-type Li deposits. Therefore, it has become imperative to search for Li from other sources. Li in coal is thought to be one of the candidates. In this study, the petrology, mineralogy, and geochemistry of No. 21 coal from the Hebi No. 6 mine, Anhe Coalfield, China, was reported, with an emphasis on the distribution, modes of occurrence, and origin of Li. The results show that Li is enriched in the No. 21 coal, and its concentration coefficient (CC) value is 6.6 on average in comparison with common world coals. Lithium in the studied coal is mainly present in aluminosilicates, mainly clay minerals, some of which contain a significant amount of Ti. The Li enrichment in the No. 21 coal is mainly controlled by the terrigenous materials and sourced from the moyite of the Yinshan Upland. Furthermore, Li in the No. 21 coal is more enriched in coals formed in acidic and humid conditions and coals influenced by fresh water during peat accumulation.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Xiaobing Wang ◽  
Lingmei Zhou ◽  
Shuquan Zhu ◽  
Hao Zheng ◽  
Yue Ma ◽  
...  

Chromium (Cr) and the emission of its compounds into the environment have caused long-term environmental contamination. In this study, the modes of occurrence of Cr in low-rank coal and their thermal stability in pyrolysis were investigated by sequential chemical extraction (SCE), single-component samples (SCS) pyrolysis, and thermochemical equilibrium simulation. The results showed that organic matter, aluminosilicate, and carbonate were the dominant modes of occurrence of Cr in low-rank coal. The modes of occurrence and chlorine (Cl) content affected the volatilization of Cr in coal. The characteristic release temperature range of Cr bounded to aluminosilicate was >600 °C and 400–600 °C for Cr bounded to a disulfide. Cr bounded to organic matter almost released completely before 600 °C. Cl enhanced the volatility of Cr and reduced its release temperature in Cr bounded to aluminosilicate. The simulation showed the content of gas products was very low, mainly chlorides. While the content of solid products, sulfides, and oxides, was much higher than gas products, showing their high thermal stability. The sulfides and oxides in chars were closely related to the carbonate and aluminosilicate bound form of Cr. The results of the equilibrium simulation were consistent with the experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiajia Liu ◽  
Jianmin Hu ◽  
Gaini Jia ◽  
Jianliang Gao ◽  
Dan Wang

The microscopic pore development of most coal seams in China leads to different permeability of coal seams and different gas drainage efficiency. Representative three coal rank coal samples were selected for saturation-centrifugation observation. The microscopic pore characteristics of coal samples were measured by nuclear magnetic resonance and liquid nitrogen adsorption methods. The experimental results showed that the coal samples were subjected to saturation-centrifugation and nuclear magnetic resonance (NMR) tests. It was found that the pores of the low-rank coal (XJ-1, XJ-2) were developed at various stages, and the connectivity between the pores was good and the permeability was also good. The adsorption pores of the intermediate coal (HB-1, HB-2) and high-rank coal (ZM-1, ZM-2) were relatively developed, and the connectivity between the pores was slightly poor. The parallel coal seam samples of coals of different ranks were better than the vertical bedding. The adsorption of liquid nitrogen showed that the low-order coal had more open pores and good gas permeability; the high-order coal had more openings at one end, more ink bottles, and narrow holes, and the gas permeability was not good. Studying the micropore structure and permeability of coals of different ranks has guiding significance for mastering the law of coal seam gas storage and transportation, extracting drilling arrangements, and increasing gas drainage and reducing greenhouse effect.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 184 ◽  
Author(s):  
Yue Yuan ◽  
Shuheng Tang ◽  
Songhang Zhang

There is limited information available on the minerals and elements present in the Jurassic coals from Datong Coalfield. This paper investigates the geochemical and mineralogical characteristics of the Middle Jurassic coals from the Tongjialiang Mine using X-ray powder diffraction (XRD), X-ray fluorescence spectrometry (XRF), inductively coupled plasma mass spectrometry (ICP-MS), and scanning electron microscopy in combination with energy-dispersive X-ray spectrometry (SEM-EDS). No.12 coal is a low-medium volatile bituminous coal and is characterized by low ash yield content, low moisture content, and ultra-low sulfur content. Compared with Chinese coals, the Tongjialiang coals have slightly higher average percentages of MgO and P2O5, and lower average percentages of the other major oxides, including SiO2, TiO2, Al2O3, Fe2O3, CaO, MnO, Na2O, and K2O. Compared with the World hard coals, Be, Cr, Co, Ni, Ge, Sn, Ta, and W are slightly enriched in the Tongjialiang coals. The concentrations of Li, F, Sc, V, Cu, Ga, Se, Sr, Zr, Nb, Hf, Pb, Th, and U are close to the average values of the world’s hard coals. The minerals in No.12 coal mainly include quartz, kaolinite, siderite, and ankerite, along with smaller amounts of pyrite, illite, calcite, and rutile. The formation of syngenetic siderite in No.12 coal is related to the weathering of biotite in the gneiss of the Yinshan Upland. The modes of occurrence of ankerite indicate that the coals may be affected by the injection of low temperature hydrothermal fluids. It is noteworthy that a portion of epigenetic ankerite may be a product of metasomatism between syngenetic siderite and the epigenetic Fe-Mg-Ca rich hydrothermal fluids. The ratios of Al2O3/TiO2, REY (rare earth elements and yittrium) enrichment patterns, the modes of occurrence of siderite and ankerite, as well as the enriched lithophile and siderophile elements indicate that the No.12 coal may have originated from the Yinshan Upland and may also have been influenced by low temperature hydrothermal fluids that might have circulated in the coal basin.


Sign in / Sign up

Export Citation Format

Share Document