scholarly journals Influence of Salinity on the Removal of Ni and Zn by Phosphate-Intercalated Nano Montmorillonite (PINM)

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 980
Author(s):  
Jiyeon Choi ◽  
Ardie Septian ◽  
Won Sik Shin

The salinity influence on the adsorptions of Ni and Zn onto phosphate-intercalated nano montmorillonite (PINM) were investigated. Single adsorption isotherm models fitted the single adsorption data well. The adsorption capacity of Ni was higher than that of Zn onto PINM at different salinities. The single adsorption parameters from Langmuir model (QmL and bL) were compared with the binary adsorption (QmL* and bL*). The QmL* of Zn was lower than that of Ni. The simultaneous presence of Ni and Zn decreased the adsorption capacities. The single and binary adsorptions onto PINM were affected by the salinity. The competitive Langmuir model (CLM), P-factor, Murali and Aylmore (M−A) models, and ideal adsorbed solution theory (IAST) were satisfactory in predicting the binary adsorption data; the CLM showed the best fitting results. Our results showed that the PINM can be used as an active Ni and Zn adsorbent for a permeable reactive barrier (PRB) in the remediation of saline groundwater.

2008 ◽  
Vol 5 (3) ◽  
pp. 499-510 ◽  
Author(s):  
M. Venkata Subbaiah ◽  
S. Kalyani ◽  
G. Sankara Reddy ◽  
Veera M. Boddu ◽  
A. Krishnaiah

Removal of chromium(VI) from aqueous solution was studied using abundantly availabletrametes versicolor polyporusfungi as biosorbing medium under equilibrium and column flow conditions. Various sorption parameters such as contact time, effect of pH, concentration of Cr(VI) and amount of biomass on the adsorption capacity of the biosorbent were studied. The equilibrium adsorption data were fitted to Freundlich and Langmuir adsorption isotherm models and the model parameters are evaluated. In addition, the data were used to predict the kinetics of adsorption. The results indicated that the adsorption of Cr(VI) on fungi followed second order kinetics. The column flow adsorption data were used to predict break through curves. The fungi loaded with Cr(VI) was regenerated with 0.1 M NaOH solution and the regenerated biomass was used in the subsequent adsorptiondesorption cycles. The experimental results demonstrated that thetrametes versicolor polyporusfungi could be used as sorbent for immobilizing Cr(VI).


2020 ◽  
Vol 12 (14) ◽  
pp. 5815
Author(s):  
Jiyeon Choi ◽  
Ardie Septian ◽  
Won Sik Shin

The influence of salinity on the single and binary sorption of Ni and Zn onto iron oxide- and manganese oxide-coated sand (IOCS and MOCS) was investigated at pH = 5. The single sorption experimental data were fitted to Freundlich, Langmuir, Dubinin–Radushkevich, and Sips models, and a nonlinear sorption isotherm was observed (NF = 0.309–0.567). The higher Brunauer–Emmett–Teller (BET) surface area (ABET) and cation exchange capacity (CEC) of MOCS contributed to the higher maximum sorption capacities (qmL) of Ni and Zn than that of IOCS. The Ni sorption capacities in the single sorption were higher than that in the binary sorption, while the Zn sorption capacities in the single sorption were less than that in the binary sorption. The single and binary sorptions onto both IOCS and MOCS were affected by the salinity, as indicated by the decrease in sorption capacities. Satisfactory predictions were shown by the binary sorption model fitting including P-factor, ideal adsorbed solution theory (IAST)–Freundlich, IAST–Langmuir, and IAST–Sips; among these, the P-factor model showed the best fitting results in predicting the influence of salinity of Ni and Zn in the binary sorption system onto IOCS and MOCS. IOCS and MOCS offer a sustainable reactive media in a permeable reactive barrier (PRB) for removing Ni and Zn in the presence of salinity.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1764 ◽  
Author(s):  
Amir Muhammad ◽  
Anwar-ul-Haq Ali Shah ◽  
Salma Bilal ◽  
Gul Rahman

Owing to its exciting physicochemical properties and doping–dedoping chemistry, polyaniline (PANI) has emerged as a potential adsorbent for removal of dyes and heavy metals from aqueous solution. Herein, we report on the synthesis of PANI composites with magnetic oxide (Fe3O4) for efficient removal of Basic Blue 3 (BB3) dye from aqueous solution. PANI, Fe3O4, and their composites were characterized with several techniques and subsequently applied for adsorption of BB3. Effect of contact time, initial concentration of dye, pH, and ionic strength on adsorption behavior were systematically investigated. The data obtained were fitted into Langmuir, Frundlich, Dubbanin-Rudiskavich (D-R), and Tempkin adsorption isotherm models for evaluation of adsorption parameters. Langmuir isotherm fits closely to the adsorption data with R2 values of 0.9788, 0.9849, and 0.9985 for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The maximum amount of dye adsorbed was 7.474, 47.977, and 78.13 mg/g for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The enhanced adsorption capability of the composites is attributed to increase in surface area and pore volume of the hybrid materials. The adsorption followed pseudo second order kinetics with R2 values of 0.873, 0.979, and 0.999 for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The activation energy, enthalpy, Gibbs free energy changes, and entropy changes were found to be 11.14, −32.84, −04.05, and −0.095 kJ/mol for Fe3O4, 11.97, −62.93, −07.78, and −0.18 kJ/mol for PANI and 09.94, −74.26, −10.63, and −0.210 kJ/mol for PANI/Fe3O4 respectively, which indicate the spontaneous and exothermic nature of the adsorption process.


2012 ◽  
Vol 229-231 ◽  
pp. 100-104 ◽  
Author(s):  
Yun Fei Shi ◽  
Xiang Jun Liu ◽  
Hui Jiao Nie ◽  
Yin Shu Liu

The adsorption isotherm model of water vapor on activated alumina is an essential equation in designing the performance of adsorption. In this paper, the currently existed 14 isotherm models of water adsorption are summarized. The correlations among these models are analyzed. These isotherm models are evaluated by fitting the water adsorption data on Rhone-Poulenc activated alumina. The results show that AD-Toth, AD-LRC, AD-UNILAN and DMAP can fit the experimental data well.


2020 ◽  
Vol 2 (6) ◽  
pp. 175-181
Author(s):  
Ho Thi Yeu Ly ◽  
Hoang Thi Khanh Dieu ◽  
Trinh Minh Tan Sang ◽  
Le Nguyen Minh Nha

The use of adsorbent prepared from sugarcane bagasse, an agro waste from sugar industries has been studied as an alternative substitute for activated carbon for the removal of dyes from aqueous solution. Adsorbents prepared from sugarcane bagasse modified with citric acid was used as a low-cost biosorbent for removal of dyes from the aqueous solution. Adsorption parameters such as initial pH values, dyes concentrations, adsorbent dosages and contact times were investigated by the batch experiments. The Freundlich and Langmuir adsorption isotherm models were used to evaluate the experimental data. The results showed that the adsorption process of dyes onto the modified sugarcane bagasse leaned towards Langmuir model for MSB and Freundlich for SB. Maximum adsorption capacity of MSB was found to be 8.40 mg/g at pH 9. The results showed that the modified sugarcane bagasse with citric acid could be a potential low-priced adsorbent for removal of the color from the aqueous solution.  


2018 ◽  
Vol 929 ◽  
pp. 50-55 ◽  
Author(s):  
Jaka Fajar Fatriansyah ◽  
Tryatmaja Matari ◽  
Sri Harjanto

Activated carbon has been successfully prepared from coconut shell charcoal using novel dry mechano-chemical activation with KOH and planetary ball mill. The combination of chemical activation and mechanical activation on coconut shell charcoal is found to increase its micopore volume and surface size. These increase yielded to a high adsorption capacity which was measured at 298 K and 268 K found to be 0.6 wt. % for activated carbon. The adsorption experiments were conducted using constant-volume-variable-pressure (CVVP) test. Adsorption parameters were calculated using adsorption isotherm models: Langmuir and Dubini-Asthakov models and were found in good agreement for type II adsorption phenomenon. It is also found that the adsorption capacity of activated carbon was suitable for hydrogen storage application.


2015 ◽  
Vol 45 (1) ◽  
pp. 27-32
Author(s):  
E. BILGIN SIMSEK ◽  
I. G BUYRUKLARDAN KAYA ◽  
U. BEKER

In the present study, polyglycidyl methacrylate graft copolymer (PG) and ethylene glycol dimethacrylate based polymers (EG) were synthesized and modified by iron oxides in order to have magnetic form (PG-M and EG-M). Batch hexavalent chromium (Cr(VI)) adsorption experiments were carried out as a function of pH. Adsorption data were applied to Langmuir, Freundlich, DubininRaduskevich, Sips, Toth and Redlich-Peterson isotherm models by utilizing non-linear techniques. The Dubinin–Radushkevich isotherm model was found to be the most suitable one for PG-M sample, while Langmuir model fitted best to the experimental data of EG-M sample. The contact time needed for both adsorbents was relatively short, ranging from 1 to 30 min. Approximately 73% of Cr(VI) was rapidly removed by PG-M within ten minutes; and for EG-M sample, 88% of Cr(VI) was removed at the end of five minutes. The rate of the adsorption is governed by a pseudo-second order rate equation.


2017 ◽  
Vol 76 (22) ◽  
Author(s):  
Apiradee Terdputtakun ◽  
Orn-anong Arqueropanyo ◽  
Ponlayuth Sooksamiti ◽  
Sorapong Janhom ◽  
Wimol Naksata

2020 ◽  
Vol 16 (7) ◽  
pp. 880-892
Author(s):  
Şerife Parlayıcı ◽  
Kübra Tuna Sezer ◽  
Erol Pehlivan

Background: In this work, Cr (VI) adsorption on nano-ZrO2๏TiO2 impregnated orange wood sawdust (Zr๏Ti/OWS) and nano-ZrO2๏TiO2 impregnated peach stone shell (Zr๏Ti/PSS) was investigated by applying different adsorption parameters such as Cr (VI) concentrations, contact time, adsorbent dose, and pH for all adsorbents. Methods: The adsorbents were characterized by SEM and FT-IR. The equilibrium status was achieved after 120 min of contact time and optimum pH value around 2 were determined for Cr (VI) adsorption. Adsorption data in the equilibrium is well-assembled by the Langmuir model during the adsorption process. Results: Langmuir isotherm model showed a maximum adsorption value of OWS: 21.65 mg/g and Zr๏Ti/OWS: 27.25 mg/g. The same isotherm displayed a maximum adsorption value of PSS: 17.64 mg/g, and Zr๏Ti/PSS: 31.15 mg/g. Pseudo-second-order kinetic models (R2=0.99) were found to be the best models for describing the Cr (VI) adsorption reactions. Conclusıon: Thermodynamic parameters such as changes in ΔG°, ΔH°, and ΔS° have been estimated, and the process was found to be spontaneous.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 510
Author(s):  
Majeda Khraisheh ◽  
Fares. Almomani ◽  
Gavin Walker

The separation of C3H4/C3H6 is one of the most energy intensive and challenging operations, requiring up to 100 theoretical stages, in traditional cryogenic distillation. In this investigation, the potential application of two MOFs (SIFSIX-3-Ni and NbOFFIVE-1-Ni) was tested by studying the adsorption–desorption behaviors at a range of operational temperatures (300–360 K) and pressures (1–100 kPa). Dynamic adsorption breakthrough tests were conducted and the stability and regeneration ability of the MOFs were established after eight consecutive cycles. In order to establish the engineering key parameters, the experimental data were fitted to four isotherm models (Langmuir, Freundlich, Sips and Toth) in addition to the estimation of the thermodynamic properties such as the isosteric heats of adsorption. The selectivity of the separation was tested by applying ideal adsorbed solution theory (IAST). The results revealed that SIFSIX-3-Ni is an effective adsorbent for the separation of 10/90 v/v C3H4/C3H6 under the range of experimental conditions used in this study. The maximum adsorption reported for the same combination was 3.2 mmolg−1. Breakthrough curves confirmed the suitability of this material for the separation with a 10-min gab before the lighter C3H4 is eluted from the column. The separated C3H6 was obtained with a 99.98% purity.


Sign in / Sign up

Export Citation Format

Share Document