scholarly journals Prediction Models for Evaluating the Strength of Cemented Paste Backfill: A Comparative Study

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1041
Author(s):  
Jiandong Liu ◽  
Guichen Li ◽  
Sen Yang ◽  
Jiandong Huang

Cemented paste backfill (CPB) is widely used in underground mining, and attracts more attention these years as it can reduce mining waste and avoid environmental pollution. Normally, to evaluate the functionality of CPB, the compressive strength (UCS) is necessary work, which is also time and money consuming. To address this issue, seven machine learning models were applied and evaluated in this study, in order to predict the UCS of CPB. In the laboratory, a series of tests were performed, and the dataset was constructed considering five key influencing variables, such as the tailings to cement ratio, curing time, solids to cement ratio, fine sand percentage and cement types. The results show that different variables have various effects on the strength of CPB. The optimum models for predicting the UCS of CPB are a support vector machine (SVM), decision tree (DT), random forest (RF) and back-propagation neural network (BPNN), which means that these models can be directly applied for UCS prediction in future work. Furthermore, the intelligent model reveals that the tailings to cement ratio has the most important influence on the strength of CPB. This research can boost CPB application in the field, and guide the artificial intelligence application in future mining.

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4549 ◽  
Author(s):  
Danyi Huang ◽  
Zhuang Bian ◽  
Qinli Qiu ◽  
Yinmao Wang ◽  
Dongmei Fan ◽  
...  

It is very difficult for humans to distinguish between two kinds of black tea obtained with similar processing technology. In this paper, an electronic tongue was used to discriminate samples of seven different grades of two types of Chinese Congou black tea. The type of black tea was identified by principal component analysis and discriminant analysis. The latter showed better results. The samples of the two types of black tea distributed on the two sides of the region graph were obtained from discriminant analysis, according to tea type. For grade discrimination, we determined grade prediction models for each tea type by partial least-squares analysis; the coefficients of determination of the prediction models were both above 0.95. Discriminant analysis separated each sample in region graph depending on its grade and displayed a classification accuracy of 98.20% by cross-validation. The back-propagation neural network showed that the grade prediction accuracy for all samples was 95.00%. Discriminant analysis could successfully distinguish tea types and grades. As a complement, the models of the biochemical components of tea and electronic tongue by support vector machine showed good prediction results. Therefore, the electronic tongue is a useful tool for Congou black tea classification.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Xuemei Wang ◽  
Ning Zhang ◽  
Yunlong Zhang ◽  
Zhuangbin Shi

Forecasting for short-term ridership is the foundation of metro operation and management. A prediction model is necessary to seize the weekly periodicity and nonlinearity characteristics of short-term ridership in real-time. First, this research captures the inherent periodicity of ridership via seasonal autoregressive integrated moving average model (SARIMA) and proposes a support vector machine overall online model (SVMOOL) which insets the weekly periodic characteristics and trains the updated data day by day. Then, this research captures the nonlinear characteristics of the ridership via successive ridership value inputs and proposes a support vector machine partial online model (SVMPOL) which insets the nonlinear characteristics and trains the updated data of the predicted day by time interval (such as 5-min). Afterwards, to avoid the drawbacks and to take advantages of the strengths of the two individual online models, this research takes the average predicted values of two models as the final predicted values, which are called support vector machine combined online model (SVMCOL). Finally, this research uses the 5-min ridership at Zhujianglu and Sanshanjie Stations of Nanjing Metro to compare the SVMCOL model with three well-known prediction models including SARIMA, back-propagation neural network (BPNN), and SVM models. The resultant performance comparisons suggest that SARIMA is superior for the stable weekday ridership to other models. Yet the SVMCOL model is the best performer for the unstable weekend ridership and holiday ridership. It shows that for metro operation manager that gear toward timely response to real-world unstable and abnormal situations, the SVMCOL may be a better tool than the three well-known models.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3003
Author(s):  
Ting Pan ◽  
Haibo Wang ◽  
Haiqing Si ◽  
Yao Li ◽  
Lei Shang

Fatigue is an important factor affecting modern flight safety. It can easily lead to a decline in pilots’ operational ability, misjudgments, and flight illusions. Moreover, it can even trigger serious flight accidents. In this paper, a wearable wireless physiological device was used to obtain pilots’ electrocardiogram (ECG) data in a simulated flight experiment, and 1440 effective samples were determined. The Friedman test was adopted to select the characteristic indexes that reflect the fatigue state of the pilot from the time domain, frequency domain, and non-linear characteristics of the effective samples. Furthermore, the variation rules of the characteristic indexes were analyzed. Principal component analysis (PCA) was utilized to extract the features of the selected feature indexes, and the feature parameter set representing the fatigue state of the pilot was established. For the study on pilots’ fatigue state identification, the feature parameter set was used as the input of the learning vector quantization (LVQ) algorithm to train the pilots’ fatigue state identification model. Results show that the recognition accuracy of the LVQ model reached 81.94%, which is 12.84% and 9.02% higher than that of traditional back propagation neural network (BPNN) and support vector machine (SVM) model, respectively. The identification model based on the LVQ established in this paper is suitable for identifying pilots’ fatigue states. This is of great practical significance to reduce flight accidents caused by pilot fatigue, thus providing a theoretical foundation for pilot fatigue risk management and the development of intelligent aircraft autopilot systems.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 660 ◽  
Author(s):  
Fang Liu ◽  
Liubin Li ◽  
Yongbin Liu ◽  
Zheng Cao ◽  
Hui Yang ◽  
...  

In real industrial applications, bearings in pairs or even more are often mounted on the same shaft. So the collected vibration signal is actually a mixed signal from multiple bearings. In this study, a method based on Hybrid Kernel Function-Support Vector Regression (HKF–SVR) whose parameters are optimized by Krill Herd (KH) algorithm was introduced for bearing performance degradation prediction in this situation. First, multi-domain statistical features are extracted from the bearing vibration signals and then fused into sensitive features using Kernel Joint Approximate Diagonalization of Eigen-matrices (KJADE) algorithm which is developed recently by our group. Due to the nonlinear mapping capability of the kernel method and the blind source separation ability of the JADE algorithm, the KJADE could extract latent source features that accurately reflecting the performance degradation from the mixed vibration signal. Then, the between-class and within-class scatters (SS) of the health-stage data sample and the current monitored data sample is calculated as the performance degradation index. Second, the parameters of the HKF–SVR are optimized by the KH (Krill Herd) algorithm to obtain the optimal performance degradation prediction model. Finally, the performance degradation trend of the bearing is predicted using the optimized HKF–SVR. Compared with the traditional methods of Back Propagation Neural Network (BPNN), Extreme Learning Machine (ELM) and traditional SVR, the results show that the proposed method has a better performance. The proposed method has a good application prospect in life prediction of coaxial bearings.


2018 ◽  
Vol 8 (9) ◽  
pp. 1632 ◽  
Author(s):  
Zahra Rezaei ◽  
Ali Selamat ◽  
Arash Taki ◽  
Mohd Mohd Rahim ◽  
Mohammed Abdul Kadir ◽  
...  

Atherosclerotic plaque rupture is the most common mechanism responsible for a majority of sudden coronary deaths. The precursor lesion of plaque rupture is thought to be a thin cap fibroatheroma (TCFA), or “vulnerable plaque”. Virtual Histology-Intravascular Ultrasound (VH-IVUS) images are clinically available for visualising colour-coded coronary artery tissue. However, it has limitations in terms of providing clinically relevant information for identifying vulnerable plaque. The aim of this research is to improve the identification of TCFA using VH-IVUS images. To more accurately segment VH-IVUS images, a semi-supervised model is developed by means of hybrid K-means with Particle Swarm Optimisation (PSO) and a minimum Euclidean distance algorithm (KMPSO-mED). Another novelty of the proposed method is fusion of different geometric and informative texture features to capture the varying heterogeneity of plaque components and compute a discriminative index for TCFA plaque, while the existing research on TCFA detection has only focused on the geometric features. Three commonly used statistical texture features are extracted from VH-IVUS images: Local Binary Patterns (LBP), Grey Level Co-occurrence Matrix (GLCM), and Modified Run Length (MRL). Geometric and texture features are concatenated in order to generate complex descriptors. Finally, Back Propagation Neural Network (BPNN), kNN (K-Nearest Neighbour), and Support Vector Machine (SVM) classifiers are applied to select the best classifier for classifying plaque into TCFA and Non-TCFA. The present study proposes a fast and accurate computer-aided method for plaque type classification. The proposed method is applied to 588 VH-IVUS images obtained from 10 patients. The results prove the superiority of the proposed method, with accuracy rates of 98.61% for TCFA plaque.


2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Xiaomei Xu ◽  
Zhirui Ye ◽  
Jin Li ◽  
Mingtao Xu

Bicycle-sharing systems (BSSs) have become a prominent feature of the transportation network in many cities. Along with the boom of BSSs, cities face the challenge of bicycle unavailability and dock shortages. It is essential to conduct rebalancing operations, the success of which largely depend on users’ demand prediction. The objective of this study is to develop users’ demand prediction models based on the rental data, which will serve rebalancing operations. First, methods to collect and process the relevant data are presented. Bicycle usage patterns are then examined from both trip-based aspect and station-based aspect to provide some guidance for users’ demand prediction. After that, the methodology combining cluster analysis, a back-propagation neural network (BPNN), and comparative analysis is proposed to predict users’ demand. Cluster analysis is used to identify different service types of stations, the BPNN method is utilized to establish the demand prediction models for different service types of stations, and comparative analysis is employed to determine if the accuracy of the prediction models is improved by making a distinction among stations and working/nonworking days. Finally, a case study is conducted to evaluate the performance of the proposed methodology. Results indicate that making a distinction among stations and working/nonworking days when predicting users’ demand can improve the accuracy of prediction models.


2011 ◽  
Vol 52-54 ◽  
pp. 674-679
Author(s):  
Chun Sheng Wang ◽  
Min Wu ◽  
Qi Lei

Based on some features in lead-zinc sintering process (LZSP), such as large time delay and strong non-linearity, an intelligent integrated method for quality prediction based on back-propagation neural network (BPNN) and improved grey system (IGS) is presented. First, the compositions of agglomerate are predicted by BPNN and IGS models. Then, a recursive entropy algorithm for the weighting coefficients is devised from the viewpoint of the information theory and an intelligent integrated prediction model (IIPM) is established. The compositions of sinter agglomerate are predicted by integrating the two prediction models. Application results show that the IIPM has higher prediction precision than that of single model and the proposed intelligent integrated method settles the modeling problem of the quality in the LZSP.


Author(s):  
Bo Huang

This study analyzed three prediction models: ID model, GM (1,1) model and back-propagation neural network (BPNN) model. Firstly, the principles of the three models were introduced, and the prediction methods of the three models were analyzed. Then, taking enterprise A as an example, the demand for human resources was predicted, and the prediction results of the three models were compared. The results showed that the maximum and minimum errors were 240 people and 12 people respectively in the prediction results of the ID3 model and 64 people and 37 people respectively in the prediction results of the GM (1, 1) model; the errors of the BPNN model were smaller than ten people, and the minimum value of the BPNN model was three people, which was in good agreement with the actual value. The prediction of the human resource demand of enterprise A in the future five years with the BPNN model suggested that the demand for employees would growing rapidly. The results show that the BPNN model has better reliability and can be popularized and applied in practice.


Sign in / Sign up

Export Citation Format

Share Document