scholarly journals The Performance Prediction Model of W-Shaped Hydrocyclone Based on Experimental Research

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 118
Author(s):  
Lanyue Jiang ◽  
Peikun Liu ◽  
Yuekan Zhang ◽  
Xinghua Yang ◽  
Xiaoyu Li ◽  
...  

Fine particles misclassification in the underflow (UF) of grinding-classification hydrocyclones might result in ore over-grinding, leading to both reduced ball mill throughput and metal recovery. In the current research, a W-shaped hydrocyclone is proposed, to efficiently decrease the misclassification of fine particles in UF. The effects of the following parameters (including cross-effects) on W-shaped hydrocyclone classification performance were studied experimentally—inlet pressure, apex diameter, and vortex finder insertion depth and diameter. A mathematical model on the basis of the response surface method was established for the prediction of W-shaped hydrocyclone separation performance. The significance of the effects of the factors on the fine particle content in UF decreased in the following order—vortex finder diameter > inlet pressure > vortex finder insertion depth > apex diameter. The significance of influences of different factors on quality effectively decreased in the following order—inlet pressure > vortex finder insertion depth > vortex finder diameter > apex diameter. The significance of factor effects on the quantity efficiency decreased in the following order—inlet pressure > vortex finder insertion depth > apex diameter > vortex finder diameter. All influence factors were considered to obtain the optimal parameter configuration—an apex diameter of 0.14 D, a vortex finder diameter of 0.31 D, an insertion depth of 1.87 D, and an inlet pressure of 0.18 MPa. The corresponding optimal result was a −25 μm particle content (C−25) in UF of 11.92%, a quality efficiency of 42.48%, and a quantity efficiency of 98.99%.

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 329
Author(s):  
Lanyue Jiang ◽  
Peikun Liu ◽  
Xinghua Yang ◽  
Yuekan Zhang ◽  
Xiaoyu Li ◽  
...  

The entrainment of fine particles in underflow of a grinding-classification hydrocyclone can cause ore overgrinding, which will lead to reductions in both metal recovery and ball mill throughput. To address this problem, this paper proposed a W-shaped hydrocyclone that can effectively reduce underflow fine particle entrainment. Experimental tests and numerical simulations were employed to deeply investigate overflow pipe diameter influence on the separation performance and internal flow field of W-shaped hydrocyclones. The effects of overflow pipe diameter on air core shape, velocity field, pressure field, and separation performance were studied. The results revealed that as the diameter of the overflow pipe increased, air core gradually stabilized, and air core diameter gradually increased. The diameter of stabilized air core was approximately 45% to 55% of overflow pipe diameter. As overflow pipe diameter increased, hydrocyclone pressure drop decreased, energy consumption was reduced, the tangential velocity decreased, outer vortex axial velocity did not change significantly, and inner vortex axial velocity gradually increased. At the same time, zero-velocity points gradually moved outward, and the inner vortex region expanded. By the increase of overflow pipe diameter, both the underflow yield and split ratio gradually decreased, the coarse particle content in the overflow product increased, and the fine particle content in the underflow product gradually decreased.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Shuwen Zhou ◽  
Yu Wang

In order to meet the filtration separation of hazardous materials on hazardous materials collection truck, the most popular separation devices, such as the cyclone separator and the filter cartridge, are combined to form a new filtration device in this study. The advantages of the two devices are utilized to achieve effective separation of solid particles and prevent secondary pollution. Among the various structural influence factors of filtration equipment, four structural parameters that affect the separation performance significantly are selected as optimization variables. The response surface methodology was used to design the simulation experiment. Using fluid mechanics analysis software, multiple sets of parameters were simulated. Then, the simulation data was used to establish a mathematical model of separation efficiency, and structural optimization analysis was performed based on the mathematical model. Finally, the results show that the inner exhaust pipe diameter and the cone height have more influence on the efficiency of the cyclone separation structure. The interaction between the diameter and insertion depth of the inner exhaust pipe is also obvious. Among the four optimization variables, there is an optimum value for the inner exhaust pipe insertion depth, and the effect of the other three factors on the separation efficiency is monotonic. In the case of a total separation efficiency of 99.9% and after optimizing the combined model within a reasonable interval, 81.25% of the 1-μm particles can be removed by the cyclone separation part, and only 18.75% are removed by the filter cartridge.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2883
Author(s):  
Yuekan Zhang ◽  
Meng Yang ◽  
Peikun Liu

Traditional hydrocyclones can be used for the concentration of sewage-containing sediments, but the low underflow concentration and the high content of fine particles result in a large subsequent dehydration workload. This study aimed to investigate the effect of columnar hydrocyclone column height on separation performance and the change in the internal flow field after the underflow orifice of the hydrocyclone was closed, so as to provide a theoretical basis for improving the ability to treat the sewage of the hydrocyclone. Numerical simulation was used to examine the change in the separation performance of the hydrocyclone and the effect of column height on the separation performance of the hydrocyclone in the case of the closed underflow orifice during intermittent discharging. The results indicate that a proper increase in column height was beneficial to improve the separation performance of the hydrocyclone. With the increase in the closing time of the underflow orifice, the particle content at the bottom of the hydrocyclone increased significantly. The experiment proves the feasibility of the intermittent discharge method in practice, and this working method can effectively increase the underflow concentration.


2013 ◽  
Vol 448-453 ◽  
pp. 786-790
Author(s):  
Wei Gao ◽  
Rong Fei Zhao ◽  
Qing Yu Liu ◽  
Xu Wei Bai

This paper take link mold pellet pelletizer to carry on the pellet fuel manufacture experiment with corn straw stalk. The influence of moisture content, material size and fermentation time impact on broken strength is studied by single factor experiment. Through quadratic regression orthogonal rotating combination experiment, establish mathematics equation of the factors and the straw pellet fuel broken strength and analyze the important degree of each experimental factor impact on the granulation rate. Through the optimized computation, definite optimization parameter of the highest broken strength is that raw material moisture content is 20%, fermentation time is 4h and particle size is 2.5mm. The result of verifying experiment indicat that the optimal parameter combination and the predict data measured were consistent.


2015 ◽  
Vol 9 (1) ◽  
pp. 117-123
Author(s):  
Tingrui Liu ◽  
Peikun Liu ◽  
Zengyin Wang ◽  
Ziqing Yu

This paper is devoted and intended to solve the problems in determining the precise separation efficiency and accurate prediction for the solid yield of multi-product cyclones based on existing experimental data. The influence of inlet pressure control on separation performance of multi-product cyclones is investigated. Hydrocyclone separation performance is influenced by many factors such as the liquid level of agitating vessel and the entrance pressure. The liquid level can also be controlled through the entrance pressure control. The mathematical model of multi-product cyclone system is a high-order complex model and it is difficult to determine the specific expressions. The paper adopts a special optimal fuzzy PI_PID control strategy performed by Programmable Logic Controller system to enable inlet pressure control. By the force of contrast with experiment and analysis for many performance indexes, the effectiveness and applicability of the control approach are demonstrated. The research provides a method for control of high-order complex system of hydrocyclone separation.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 201 ◽  
Author(s):  
Zizhao Zhang ◽  
Wanghua Sui ◽  
Kaikai Wang ◽  
Guobin Tang ◽  
Xiaoping Li

The distribution of reclaimed soil particle size under seepage conditions after the management period will directly determine the success or failure of reclamation work. The geotechnical experimental method was used in this paper to study the changes in the granulometric composition of soil. The results show that the granulometric composition of the reclaimed soil varied obviously at different depths. The granulometric composition of the soil at a depth of 10 cm was not much different from undisturbed reclaimed soil (URS). At a depth of 30 cm, as the sharp decrease of the content of fine particles resulted in coarser reclaimed soil, the soil became more uniform, with an increase in porosity and water content. At a depth of 50 cm, the fine particle content was generally slightly lower than that of URS. At a depth of 70 cm, the fine particle content of the soil greatly exceeded that of the URS, with the finest soil particles and lowest porosity. The main reason for the above-mentioned changes of granulometric composition in the reclaimed soil was the seepage in soil caused by irrigation during the management period. The research results can provide a reference for management after land reclamation at non-metallic mines in Xinjiang, China.


Author(s):  
Lixin Zhao ◽  
Minghu Jiang

Basic separating principle of hydrocyclones and the cyclic experimental research facilities are introduced. The difficulty of separating fine particle is described. Based on a solid-liquid hydrocyclone used for separating fine particles, effect of cyclic flow condition on hydrocyclone’s performance is studied. Effects of cyclic period ratio, cyclic flowrate amplitude ratio, Reynolds number, gas liquid ratio, and the cyclical signal type on the hydrocyclone’s fine particle separation performance, especially on relative overflow purifying rate were studied in detail. The results show that the separation efficiency of the hydrocyclone operated under cyclic flow condition can be higher than that in steady condition, when the cyclic period ratio is about 0.68 and the cyclic flowrate amplitude ratio is about 2%. Rectangular wave seems to be the best cyclic signal for enhancing the hydrocyclone’s separation efficiency. The cyclical change of flowrate leads to the increasing of hydrocyclone’s energy consumption to some extent, while the increasing amount is very less, which is no more than 3% in general.


Sign in / Sign up

Export Citation Format

Share Document