scholarly journals Effect of Overflow Pipe on the Internal Flow Fields and Separation Performance of W-Shaped Hydrocyclones

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 329
Author(s):  
Lanyue Jiang ◽  
Peikun Liu ◽  
Xinghua Yang ◽  
Yuekan Zhang ◽  
Xiaoyu Li ◽  
...  

The entrainment of fine particles in underflow of a grinding-classification hydrocyclone can cause ore overgrinding, which will lead to reductions in both metal recovery and ball mill throughput. To address this problem, this paper proposed a W-shaped hydrocyclone that can effectively reduce underflow fine particle entrainment. Experimental tests and numerical simulations were employed to deeply investigate overflow pipe diameter influence on the separation performance and internal flow field of W-shaped hydrocyclones. The effects of overflow pipe diameter on air core shape, velocity field, pressure field, and separation performance were studied. The results revealed that as the diameter of the overflow pipe increased, air core gradually stabilized, and air core diameter gradually increased. The diameter of stabilized air core was approximately 45% to 55% of overflow pipe diameter. As overflow pipe diameter increased, hydrocyclone pressure drop decreased, energy consumption was reduced, the tangential velocity decreased, outer vortex axial velocity did not change significantly, and inner vortex axial velocity gradually increased. At the same time, zero-velocity points gradually moved outward, and the inner vortex region expanded. By the increase of overflow pipe diameter, both the underflow yield and split ratio gradually decreased, the coarse particle content in the overflow product increased, and the fine particle content in the underflow product gradually decreased.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2883
Author(s):  
Yuekan Zhang ◽  
Meng Yang ◽  
Peikun Liu

Traditional hydrocyclones can be used for the concentration of sewage-containing sediments, but the low underflow concentration and the high content of fine particles result in a large subsequent dehydration workload. This study aimed to investigate the effect of columnar hydrocyclone column height on separation performance and the change in the internal flow field after the underflow orifice of the hydrocyclone was closed, so as to provide a theoretical basis for improving the ability to treat the sewage of the hydrocyclone. Numerical simulation was used to examine the change in the separation performance of the hydrocyclone and the effect of column height on the separation performance of the hydrocyclone in the case of the closed underflow orifice during intermittent discharging. The results indicate that a proper increase in column height was beneficial to improve the separation performance of the hydrocyclone. With the increase in the closing time of the underflow orifice, the particle content at the bottom of the hydrocyclone increased significantly. The experiment proves the feasibility of the intermittent discharge method in practice, and this working method can effectively increase the underflow concentration.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 201 ◽  
Author(s):  
Zizhao Zhang ◽  
Wanghua Sui ◽  
Kaikai Wang ◽  
Guobin Tang ◽  
Xiaoping Li

The distribution of reclaimed soil particle size under seepage conditions after the management period will directly determine the success or failure of reclamation work. The geotechnical experimental method was used in this paper to study the changes in the granulometric composition of soil. The results show that the granulometric composition of the reclaimed soil varied obviously at different depths. The granulometric composition of the soil at a depth of 10 cm was not much different from undisturbed reclaimed soil (URS). At a depth of 30 cm, as the sharp decrease of the content of fine particles resulted in coarser reclaimed soil, the soil became more uniform, with an increase in porosity and water content. At a depth of 50 cm, the fine particle content was generally slightly lower than that of URS. At a depth of 70 cm, the fine particle content of the soil greatly exceeded that of the URS, with the finest soil particles and lowest porosity. The main reason for the above-mentioned changes of granulometric composition in the reclaimed soil was the seepage in soil caused by irrigation during the management period. The research results can provide a reference for management after land reclamation at non-metallic mines in Xinjiang, China.


Author(s):  
Lixin Zhao ◽  
Minghu Jiang

Basic separating principle of hydrocyclones and the cyclic experimental research facilities are introduced. The difficulty of separating fine particle is described. Based on a solid-liquid hydrocyclone used for separating fine particles, effect of cyclic flow condition on hydrocyclone’s performance is studied. Effects of cyclic period ratio, cyclic flowrate amplitude ratio, Reynolds number, gas liquid ratio, and the cyclical signal type on the hydrocyclone’s fine particle separation performance, especially on relative overflow purifying rate were studied in detail. The results show that the separation efficiency of the hydrocyclone operated under cyclic flow condition can be higher than that in steady condition, when the cyclic period ratio is about 0.68 and the cyclic flowrate amplitude ratio is about 2%. Rectangular wave seems to be the best cyclic signal for enhancing the hydrocyclone’s separation efficiency. The cyclical change of flowrate leads to the increasing of hydrocyclone’s energy consumption to some extent, while the increasing amount is very less, which is no more than 3% in general.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 118
Author(s):  
Lanyue Jiang ◽  
Peikun Liu ◽  
Yuekan Zhang ◽  
Xinghua Yang ◽  
Xiaoyu Li ◽  
...  

Fine particles misclassification in the underflow (UF) of grinding-classification hydrocyclones might result in ore over-grinding, leading to both reduced ball mill throughput and metal recovery. In the current research, a W-shaped hydrocyclone is proposed, to efficiently decrease the misclassification of fine particles in UF. The effects of the following parameters (including cross-effects) on W-shaped hydrocyclone classification performance were studied experimentally—inlet pressure, apex diameter, and vortex finder insertion depth and diameter. A mathematical model on the basis of the response surface method was established for the prediction of W-shaped hydrocyclone separation performance. The significance of the effects of the factors on the fine particle content in UF decreased in the following order—vortex finder diameter > inlet pressure > vortex finder insertion depth > apex diameter. The significance of influences of different factors on quality effectively decreased in the following order—inlet pressure > vortex finder insertion depth > vortex finder diameter > apex diameter. The significance of factor effects on the quantity efficiency decreased in the following order—inlet pressure > vortex finder insertion depth > apex diameter > vortex finder diameter. All influence factors were considered to obtain the optimal parameter configuration—an apex diameter of 0.14 D, a vortex finder diameter of 0.31 D, an insertion depth of 1.87 D, and an inlet pressure of 0.18 MPa. The corresponding optimal result was a −25 μm particle content (C−25) in UF of 11.92%, a quality efficiency of 42.48%, and a quantity efficiency of 98.99%.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 300 ◽  
Author(s):  
Yuekan Zhang ◽  
Peikun Liu ◽  
Lanyue Jiang ◽  
Xinghua Yang ◽  
Junru Yang

A traditional hydrocyclone can only generate two products with different size fractions after one classification, which does not meet the fine classification requirements for narrow size fractions. In order to achieve the fine classification, a multi-product hydrocyclone with double-overflow-pipe structure was designed in this study. In this work, numerical simulation and experimental test methods were used to study the internal flow field characteristics and distribution characteristics of the product size fraction. The simulation results showed that in contrast with the traditional single overflow pipe, there were two turns in the internal axial velocity direction of the hydrocyclone with the double-overflow-pipe structure. Meanwhile, the influence rule of the diameter of the underflow outlet on the flow field characteristics was obtained through numerical simulation. From the test, five products with different size fractions were obtained after one classification and the influence rule of the diameter of the underflow outlet on the size fraction distribution of multi-products was also obtained. This work provides a feasible research idea for obtaining the fine classification of multiple products.


2018 ◽  
Vol 276 ◽  
pp. 97-102 ◽  
Author(s):  
Mindaugas Daukšys ◽  
Albertas Klovas ◽  
Danutė Vaičiukynienė

The influence of the fine particle content on the rheological properties of the fresh concrete mixture was studied. The change of cement together with sand particles up to 0.25 mm in mixture composition was taken into the consideration. The amount of fine particles in mixture composition varied in the range from 402 to 639 kg per one cubic meter of the concrete mixture. Technological properties of the concrete mixture were established according to the standardized requirements, rheological properties: yield stresses and viscosity of conventional concrete mixture were calculated based on analytical formulas. According to obtained test results, the increase of fine particle content from 481 to 520 kg in mixture reduced the yield stresses from about 557 to 132 Pa. Further increase of fine particle content from 600 to 639 kg showed the rise of yield stress by 3.87 times. On the other hand, the viscosity of concrete mixture gradually decreased (ca. 5.6 times). To sum up, the rheological properties of the concrete mixture were significantly influenced by the content, packing density, fineness, surface texture and particle size distribution of fine particles.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 307
Author(s):  
Yuekan Zhang ◽  
Meng Yang ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Jinguang Xu ◽  
...  

The vast majority of current research on hydrocyclone field centrifugal separation focuses on low concentration fluids having volume fraction less than 3%. For high-concentration fluids having volume fractions greater than 10%, which are often encountered in engineering, the law governing particle motion and the classification mechanism are still unclear. In order to gain insights into the interaction between fine particles in the high concentration hydrocyclone field and to improve the hydrocyclone separation performance of these particles, a Dense Discrete Phase Model (DDPM) of the Euler-Eulerian method under the Ansys Fluent 14.5 software was employed. Numerical simulations were carried out to study the characteristics of the hydrocyclone field of dense particles and the influence of parameters, such as the diameter of the overflow outlet, diameter of the underflow outlet, and material concentration, on separation performance. The trajectories and separation efficiencies of two kinds of fine particles with different densities and six different particle sizes at high concentration were obtained. The results show that for the hydrocyclone classification of high-concentration fine particles, particles with large density and small particle size are more likely to enter the internal cyclone and discharge from the overflow. Particles with small density and large particle size are more likely to enter the external cyclone and discharge from the underflow. The research results of this topic could provide a feasible reference and theoretical basis for the centrifugal separation of high-concentration fine particle fluid.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 209 ◽  
Author(s):  
Lanyue Jiang ◽  
Peikun Liu ◽  
Yuekan Zhang ◽  
Xinghua Yang ◽  
Hui Wang

The “entrainment of coarse particles in overflow” and the “entrainment of fine particlesin underflow” are two inevitable phenomena in the hydrocyclone separation process, which canresult in a wide product size distribution that does not meet the requirement of a preciseclassification. Hence, this study proposed a two-stage (TS) hydrocyclone, and the effects of the inletvelocity on the TS hydrocyclone were investigated using computational fluid dynamics (CFD).More specifically, the influences of the first-stage inlet velocity on the second-stage swirling flowfield and the separation performance were studied. In addition, the particle size distribution of theproduct was analyzed. It was found that the first-stage overflow contained few coarse particlesabove 40 μm and that the second-stage underflow contained few fine particles. The second-stageunderflow was free of particles smaller than 10 μm and almost free of particles smaller than 20 μm.The underflow product contained few fine particles. Moreover, the median particle size of thesecond-stage overflow product was similar to that of the feed. Inspired by this observation, wepropose to recycle the second-stage overflow to the feed for re-classification and to use only thefirst-stage overflow and the second-stage underflow as products. In this way, fine particle productsfree of coarse particle entrainment, and coarse particle products free of fine particle entrainmentcan be obtained, achieving the goal of precise classification.


Author(s):  
Feng Li ◽  
Minghu Jiang ◽  
Lixin Zhao

Compound hydrocyclone is an important separation equipment in oilfield waste water treatment. In order to grasp the equipment separation characteristics, its pressure field and production ability research is becoming more and more important. In the process of pressure or pressure drop deduced, the hydrocyclone’s vortex field is divided into two parts: semi-free vortex area and compulsive vortex area. In the free vortex area, the pressure and the pressure drop are all deduced by the tangential equation, the pressure gradient equation and the relationship equation of tangential velocity in the hydrocyclone body and the velocity of the rotary crib. In the compulsive vortex area, the pressure and the pressure drop are deduced by the velocity equation and the hydrocyclone’s separation equation. As to the respect of the production ability, it is fixed on the relationship of the inlet flow-rate, overflow pipe diameter, the main diameter of the compound hydrocyclone, pressure drop and the inlet liquid density. The research indicates that the pressure or the pressure drop are all connected with compound hydrocyclone’s diameter, rotary crib’s running velocity and diameter of the maximum tangential velocity track face. As the results of the research, the ascertained key operators, pressure and the pressure drop, the hydrocyclone’s production ability can provide designing consult for the hydrocyclone designers.


Sign in / Sign up

Export Citation Format

Share Document