scholarly journals Fractal Characteristics and Heterogeneity of the Nanopore Structure of Marine Shale in Southern North China

Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 242 ◽  
Author(s):  
Yu ◽  
Ju ◽  
Qi ◽  
Qiao ◽  
Huang ◽  
...  

The characteristics of the nanopore structure in shale play a crucial role in methane adsorption and in determining the occurrence and migration of shale gas. In this study, using an integrated approach of X-ray diffraction (XRD), N2 adsorption, and field emission scanning electron microscopy (FE-SEM), we systematically focused on eight drilling samples of marine Taiyuan shale from well ZK1 in southern North China to study the characteristics and heterogeneity of their nanopore structure. The results indicated that different sedimentary environments may control the precipitation of clay and quartz between transitional shale and marine shale, leading to different organic matter (OM)–clay relationships and different correlations between total organic carbon (TOC) and mineral content. The shale with high TOC content tended to have more heterogeneous micropores, leading to a higher fractal dimension and a more complex nanopore structure. With the increase of TOC content and thermal evolution of OM, the heterogeneity of the pore structure became more significant. Quartz from marine shale possessed abundant macropores, resulting in a decrease of the Brunauere–Emmette–Teller (BET (BET) surface area (SA) and an increase of the average pore size (APS), while clay minerals developed a large number of micropores which worked together with OM to influence the nanopore structure of shale, leading to the increase of the SA and the decrease of the APS. The spatial order of interlayer pores increased with the increase of mixed-layer illite–smectite (MLIS) content, which naturally reduced the fractal dimensions. In contrast, kaolinite, chlorite, and illite have a small number of nanopores, which might enhance the complexity and reduce the connectivity of the nanopore system by mean of pore-blocking. Taiyuan shale with higher heterogeneity is highly fractal, and its fractal dimensions are principally related to the micropores. The fractal dimensions correlate positively with the SA and total pore volume, suggesting that marine shale with higher heterogeneity may possess a larger SA and a higher total pore volume.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


2014 ◽  
Vol 898 ◽  
pp. 132-135 ◽  
Author(s):  
Jia Li He ◽  
Xiu Hua Chen ◽  
Wen Jie Zhu ◽  
Wen Hui Ma ◽  
Yong Yin Xiao ◽  
...  

The UF resin/SiO2 composites microspheres with particle size of 2μm were successfully prepared by polymerization of silica sol from base-catalyzed hydrolysis of tetraethyl orthosilicate, and urea-formaldehyde via the PICA approach, and then calcination in air to remove organic UF resin and yield porous silica microspheres. The samples were characterized by Zetasizer NanoZS Instrument, SEM and Nitrogen adsorption-desorption isotherms. The results showed that the synthesized porous silica microspheres with a BET surface area of 67.01m2/g, a BJH average pore size diameter of 37.32 nm and a total pore volume of 0.69cm3/g, respectively.


2014 ◽  
Vol 602-603 ◽  
pp. 279-284
Author(s):  
Li Qun Duan ◽  
Chen Chen Zhang ◽  
Qing Song Ma ◽  
Zhao Hui Chen

Nanoporous carbonaceous materials derived from polysiloxane were first prepared by pyrolysis at 1300°C followed with hydrofluoric acid (HF) etching treatment. Their thermal stability of pore structure in inert condition was investigated in this paper by nitrogen adsorption technique in detail. The specific surface area (SSA) and pore volume (total pore volume, micropore volume, mesopore volume) decreased continually in the heat-treatment temperature range of 1000~1400°C. The average pore size almost kept the same with the raw sample. However, when the temperature exceeded 1400°C, the micropore interconnection began transforming to mesopore structure, which led to the decline of SSA and the increase of average pore size. Furthermore, the pore size distributions (PSDs) curves showed that heat-treatment had an advantage on the transition process of pore structure from disorder to regularity to some extent when heat-treated in the range 1000~1400°C for the most possible reason of relief of residue strain in the carbonaceous materials.


2009 ◽  
Vol 79-82 ◽  
pp. 1907-1910
Author(s):  
Zhi Gang Xie

Porous activated carbon was prepared from orange wastes using zinc chloride as an activating agent by one-step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on pore characteristics of activated carbon were studied. The porous structures of the orange wastes activated carbon were investigated by BET, D-R equations, BJH equations and Kelvin theory. The morphology was observed using transmission electron microscopy (TEM). The mesoporous activated carbon is gained when the impregnation ratio is 3:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has total pore volume 2.098 cm3/g, mesoporous pore volume 1.438 cm3/g, with a high BET surface area 1476m2/g. The pore distribution of the mesoporous activated carbon is very concentrative, with average pore diameter of 3.88nm. While, the high specific surface area activated carbon is gained when the impregnation ratio is 2:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has high BET surface area 1909 m2/g, while the total pore volume is only 1.448cm3/g and microporous pore volume is 0.889cm3/g, with average pore diameter of 2.29 nm.


2014 ◽  
Vol 809-810 ◽  
pp. 207-212
Author(s):  
Jia Li He ◽  
Xiu Hua Chen ◽  
Wen Jie Zhu ◽  
Wen Hui Ma ◽  
Yong Yin Xiao ◽  
...  

Monodisperse mesoporous silica microspheres (MSM-SF) were successfully prepared through PICA and pseudomorphic transformation using silica fume as original silica source. The structure and morphology of spheres were quantitatively investigated by Zata potential and particle size analyzer, N2 sorption isotherms, XRD, SEM and TEM. The results showed that the monodisperse spherical mesoporous silica microspheres (MSM-SF) exhibited uniform spherical morphology, worm-like mesoporous, large BET surface area of 559.9m2/g; its BJH average pore size diameter and total pore volume are 3.3nm and 0.12cm3/g, respectively. This preparation method provides a new synthetic strategy to control the particle morphology and structure simultaneously, meanwhile this method can also significantly reduce the cost of synthesis of mesoporous silica microspheres.


2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Prima Astuti Handayani ◽  
Eko Nurjanah ◽  
Wara Dyah Pita Rengga

<p>Sekam padi merupakan salah satu sumber penghasil silika terbesar, berpotensi sebagai bahan pembuatan silika gel. Abu sekam padi mengandung silika sebanyak 87%-97% berat kering. Sintesis silika gel dari abu sekam padi dilakukan dengan mereaksikan abu sekam padi menggunakan larutan NaOH 1N pada suhu 800C selama 1 jam dan dilanjutkan dengan penambahan larutan asam hingga pH=7. Gel yang dihasilkan selanjutnya didiamkan selama 18 jam kemudian dikeringkan pada suhu dikeringkan menggunakan oven pada suhu 800C hingga beratnya konstan. Hasil percobaan diperoleh bahwa silika gel dengan penambahan CH3COOH menghasilkan yield yang lebih besar dibandingkan penambahan HCl. Berdasarkan analisis FT-IR silika gel yang diperoleh memiliki gugus Si-O-Si dan gugus Si-OH. Silika gel dengan penambahan HCl memiliki surface area sebesar 65,558 m2/g, total pore volume 0,1935 cc/g, dan average pore size sebesar 59,0196 Å. Sedangkan silika gel dengan penambahan CH3COOH memiliki surface area sebesar 9,685 m2/g, total pore volume 0,02118 cc/g, dan average pore size sebesar 43,7357Å. Silika gel dengan penambahan<br />CH3COOH memiliki kemampuan menyerap kelembaban udara yang lebih baik dibanding silika gel dengan penambahan HCl.</p><p> </p><p>Rice hull ash (RHA) is one of the biggest source of silica, potential for sintesis silica gel. RHA contains silica as many as 87 % -97 %. Synthesis of silica gel from rice hull ash was done by reaction using NaOH solution at temperature 800C for 1 hour and followed by the addition of an acid solution until pH=7. The gel were rested with time aging 18 hour, and then dried using oven at temperature 800C until constant weigh. The results obtained that the silica gel with the addition of CH3COOH produce higher yields than the addition of HCl. Based on FT-IR analysis, silica gel has a group of silanol (Si-`OH) and siloxan (Si-O-Si) group. Silica gel with the addition of HCl has a surface area 65,558 m2/g, a total pore volume 0,1935 cc/g, and average pore size 59,0196 Å. While the silica gel with the addition of CH3COOH has a surface area 9.685 m2/g, a total pore volume 0,02118 cc/g, and average pore size 43,7357 Å. Silica gel with the addition of CH3COOH<br />has the ability to absorb humidity better than silica gel with the addition of HCl.</p>


2013 ◽  
Vol 700 ◽  
pp. 67-70 ◽  
Author(s):  
Rui Ma ◽  
Wen Jie Zhang

A novel porous TiO2-Al2O3 composite as a kind of environmental material was prepared by sol-gel method. The pore size distribution is not even in the whole pore size range. When pore size is 7.049 nm, the maximum pore volume of the material is 0.06627 cm3·g-1. The average pore size for the material is 14.56 nm and the total pore volume is 0.3945 cm3·g-1, as calculated from BJH method. Photocatalytic degradation of methyl orange can be regarded as following first order kinetic reaction. After 90 min of reaction, methyl orange degradation on the material was 77.0% and the total dye decoloration rate was 95.1%, containing both adsorption and photocatalytic degradation. The intensities of both peaks in visible and UV regions decreased sharply during photocatalytic degradation process.


2018 ◽  
Vol 8 (11) ◽  
pp. 2302 ◽  
Author(s):  
Abdelfattah Amari ◽  
Hatem Gannouni ◽  
Mohammad Khan ◽  
Mohammed Almesfer ◽  
Abubakr Elkhaleefa ◽  
...  

In this study, natural clay minerals with green appearance were treated with sulfuric acid. Mass percentage of acid (wt%), temperature (T), contact time (t) and liquid-to-solid mass ratio (R) are used as the prevailing factors that determine the extent of acid-activation. The values of these factors range from 15–50%, 60–90 °C, 1.5–6 h and 4–7, respectively. The study has focused on the structural changes as well as textural characteristics of the clay. Three activated clay samples were prepared under different treatment conditions. The samples were characterized using X-ray powder diffraction (XRD), fourier transform infrared (FTIR), scanning electron microscope (SEM), chemical analysis and N2 adsorption techniques. Characterization of the treated clay minerals exhibited significant structural changes to a greater extent of acid-activation, from being partially crystalline to being amorphous silica. The surface area and total pore volume of clay increased proportionally with the level of acid treatment. The average pore diameter behaved differently. During the strong acid treatment, a large increase in pore volume and the enlargement of the pore size distribution were observed. This suggests that considerable structural changes and partial destruction may have occurred in this condition. The removal of methylene blue, used as cationic dye, from aqueous solution by the batch adsorption technique on three prepared acid-activated clay samples was studied. The Langmuir model was found to agree well with the experimental data.


2012 ◽  
Vol 174-177 ◽  
pp. 1010-1014 ◽  
Author(s):  
Hong Bin Liu ◽  
Yang Ju ◽  
Kai Pei Tian ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The pore structure characteristics of reactive powder concrete (RPC) were investigated by means of the mercury injection method at seven temperature levels, namely, 20°C, 100°C, 150°C, 200°C, 250°C, 300°C, 350°C, respectively. The characteristic parameters such as porosity, pore volume, average pore size and threshold aperture varied with temperatures were analyzed. The results indicate that the porosity, pore volume, threshold aperture and other characteristic parameters of RPC increased with the temperature increasing.


2017 ◽  
Vol 11 (5) ◽  
pp. 47 ◽  
Author(s):  
Heman A. Smail ◽  
Kafia M. Shareef ◽  
Zainab H. Ramli

The adsorption of lead (Pb II) ion on different types of synthesized zeolite was investigated. The BET surface area, total pore volume & average pore size distribution of these synthesized zeolites were determined by adsorption isotherms for N2, the surface area & total pore volume of their sources were found by adsorption isothermN2.The adsorption equilibrium was measured after 24h at room temperature (RT) & concentration 10mg.L-1 of Pb (II) was used. The adsorption of heavy metal Pb (II) on four different prepared zeolites (LTA from Montmorillonite clay, FAU(Y)-B.H (G2) from Barley husk, Mordenite (G1) from Chert rock, FAU(X)-S.C (G3) from shale clay & modified Shale clay by oxalic acid (N1) & sodium hydroxide (N2)), were compared with the adsorption of their sources by using static batch experimental method. The major factors affecting the heavy metal ion sorption on different synthesized zeolites & their sources were investigated. The adsorption equilibrium capacity (Qm) of Pb (II) ion for different synthesized zeolites ordered from (N1>N2>LTA>G3>G2>G1&for their sources ordered Shale clay >Montmorilonite> Barley husk>Chert rock. The atomic absorption spectrometry was used for analysis of lead heavy metal ion, the obtained results in this study showed that the different synthesized zeolites were efficient ion exchanges for removing heavy metal, in particular, the modified zeolite from shale clay by oxalic acid.


Sign in / Sign up

Export Citation Format

Share Document