scholarly journals Multi-year Quantitative Evaluation of Stilbenoids Levels Among Selected Muscadine Grape Cultivars

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 981 ◽  
Author(s):  
Devaiah Kambiranda ◽  
Sheikh Basha ◽  
Stephen Stringer ◽  
James Obuya ◽  
Janana Snowden

Stilbenoids such as t-piceid, t-resveratrol, ε-viniferins, and t-pterostilbene can differ significantly among grape cultivars and years due to variation in environmental conditions and subsequent stressors encountered during a year. This study evaluated diverse muscadine grape cultivars for their ability to consistently produce four major stilbenoids such as t-piceid, t-resveratrol, ε-viniferins, and t-pterostilbene irrespective of environmental changes that can impact their production. Berries from forty-two muscadine grape cultivars were collected for three years (2013, 2014, and 2015) to measure stilbenoids. Results showed significant differences in the composition of four stilbenoids among the muscadine cultivars. The highest level of stilbenoids was observed in ‘Fry Seedless’ (270.20 µg/g fresh weight) in each of the three consecutive years tested followed by ‘Pride’ (46.18 µg/g fresh weight) while ‘Doreen’ produced the lowest level of stilbenoids (1.73 µg/g fresh weight). Results demonstrated that certain muscadine grape cultivars consistently produced varied levels of the four major stilbenoids year after year. Based on the total content of stilbenoids, the 42 muscadine cultivars studied were grouped into three categories such as High, Medium and Low stilbenoid-containing cultivars. This information will help establish new vineyards with cultivars that are less prone to variations in environmental conditions and can consistently produce stilbenoid-rich muscadine grape berries with enhanced market value to promote consumer health.

2000 ◽  
Vol 65 (7) ◽  
pp. 1073-1081 ◽  
Author(s):  
Valerie Holubová ◽  
Iva Chvílíčková ◽  
Vlastimil Kubáň

Extraction procedures (steam distillation, supercritical fluid extraction and solvent extraction) for isolation of monoterpene hydrocarbons from fresh needles of Picea abies and Picea omorica were optimised. The procedures were compared with the aim of minimizing consumption of needles and improving the extraction efficiency and repeatability. An influence of homogenisation procedures and storage conditions (liquid nitrogen, -18 and 4 °C) on the total content and composition of essential oils was studied. Cryogenic grinding (liquid nitrogen) combined with the extraction with cold hexane (extraction time 2 h) and subsequent GC-MS determination in freshly homogenised needles gives the best results (1.5-4 times better extraction efficiency, RSD < 10% for P. abies and < 25% for P. omorica). Limits of detections (3 S/N) for individual monoterpene hydrocarbons from units to tens of ng/g and recoveries 97.2-101.4% were found in fresh needles (calculated to fresh weight). While cooling to 4 °C is unacceptable, freezing at -18 °C for the period of 18 days in the dark gives also good results.


2018 ◽  
Vol 115 (44) ◽  
pp. 11156-11161 ◽  
Author(s):  
Rona Shaharabani ◽  
Maor Ram-On ◽  
Yeshayahu Talmon ◽  
Roy Beck

Multiple sclerosis (MS) is an autoimmune disease, leading to the destruction of the myelin sheaths, the protective layers surrounding the axons. The etiology of the disease is unknown, although there are several postulated environmental factors that may contribute to it. Recently, myelin damage was correlated to structural phase transition from a healthy stack of lamellas to a diseased inverted hexagonal phase as a result of the altered lipid stoichiometry and low myelin basic protein (MBP) content. In this work, we show that environmental conditions, such as buffer salinity and temperature, induce the same pathological phase transition as in the case of the lipid composition in the absence of MBP. These phase transitions have different transition points, which depend on the lipid’s compositions, and are ion specific. In extreme environmental conditions, we find an additional dense lamellar phase and that the native lipid composition results in similar pathology as the diseased composition. These findings demonstrate that several local environmental changes can trigger pathological structural changes. We postulate that these structural modifications result in myelin membrane vulnerability to the immune system attacks and thus can help explain MS etiology.


2018 ◽  
Vol 75 (7) ◽  
pp. 2463-2475 ◽  
Author(s):  
Romain Frelat ◽  
Alessandro Orio ◽  
Michele Casini ◽  
Andreas Lehmann ◽  
Bastien Mérigot ◽  
...  

Abstract Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities—key information for the management and conservation of ecosystems.


2020 ◽  
Vol 8 ◽  
Author(s):  
Kathleen Stoof-Leichsenring ◽  
Sisi Liu ◽  
Weihan Jia ◽  
Kai Li ◽  
Luidmila Pestryakova ◽  
...  

Plant diversity in the Arctic and at high altitudes strongly depends on and rebounds to climatic and environmental variability and is nowadays tremendously impacted by recent climate warming. Therefore, past changes in plant diversity in the high Arctic and high-altitude regions are used to infer climatic and environmental changes through time and allow future predictions. Sedimentary DNA (sedDNA) is an established proxy for the detection of local plant diversity in lake sediments, but still relationships between environmental conditions and preservation of the plant sedDNA proxy are far from being fully understood. Studying modern relationships between environmental conditions and plant sedDNA will improve our understanding under which conditions sedDNA is well-preserved helping to a.) evaluate suitable localities for sedDNA approaches, b.) provide analogues for preservation conditions and c.) conduct reconstruction of plant diversity and climate change. This study investigates modern plant diversity applying a plant-specific metabarcoding approach on sedimentary DNA of surface sediment samples from 262 lake localities covering a large geographical, climatic and ecological gradient. Latitude ranges between 25°N and 73°N and longitude between 81°E and 161°E, including lowland lakes and elevated lakes up to 5168 m a.s.l. Further, our sampling localities cover a climatic gradient ranging in mean annual temperature between -15°C and +18°C and in mean annual precipitation between 36­ and 935 mm. The localities in Siberia span over a large vegetational gradient including tundra, open woodland and boreal forest. Lake localities in China include alpine meadow, shrub, forest and steppe and also cultivated areas. The assessment of plant diversity in the underlying dataset was conducted by a specific plant metabarcoding approach. We provide a large dataset of genetic plant diversity retrieved from surface sedimentary DNA from lakes in Siberia and China spanning over a large environmental gradient. Our dataset encompasses sedDNA sequence data of 259 surface lake sediments and three soil samples originating from Siberian and Chinese lakes. We used the established chloroplastidal P6 loop trnL marker for plant diversity assessment. The merged, filtered and assigned dataset includes 15,692,944 read counts resulting in 623 unique plant DNA sequence types which have a 100% match to either the EMBL or to the specific Arctic plant reference database. The underlying dataset includes a taxonomic list of identified plants and results from PCR replicates, as well as extraction blanks (BLANKs) and PCR negative controls (NTCs), which were run along with the investigated lake samples. This collection of plant metabarcoding data from modern lake sediments is still ongoing and additional data will be released in the future.


2013 ◽  
Vol 778 ◽  
pp. 757-764 ◽  
Author(s):  
Francesca Lanata

Structural design, regardless of construction material, is based mainly on deterministic codes that partially take into account the real structural response under service and environmental conditions. This approach can lead to overdesigned (and expensive) structures. The differences between the designed and the real behaviors are usually due to service loads not taken into account during the design or simply to the natural degradation of materials properties with time. This is particularly true for wood, which is strongly influenced by service and environmental conditions. Structural Health Monitoring can improve the knowledge of timber structures under service conditions, provide information on material aging and follow the degradation of the overall building performance with time.A long-term monitoring control has been planned on a three-floor structure composed by wooden trusses and composite concrete-wood slabs. The structure is located in Nantes, France, and it is the new extension to the Wood Science and Technology Academy (ESB). The main purpose of the monitoring is to follow the long-term structural response from a mechanical and energetic point of view, particularly during the first few service years. Both static and dynamic behavior is being followed through strain gages and accelerometers. The measurements will be further put into relation with the environmental changes, temperature and humidity in particular, and with the operational charges with the aim to improve the comprehension of long-term performances of wooden structures under service. The goal is to propose new improved and optimized methods to make timber constructions more efficient compared to other construction materials (masonry, concrete, steel).The paper will mainly focus on the criteria used to design the architecture of the monitoring system, the parameters to measure and the sensors to install. The first analyses of the measurements will be presented at the conference to have a feedback on the performance of the installed sensors and to start to define a general protocol for the Structural Health Monitoring of such type of timber structures.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3063
Author(s):  
Anton A. Zharov ◽  
Anna N. Neretina ◽  
D. Christopher Rogers ◽  
Svetlana A. Reshetova ◽  
Sofia M. Sinitsa ◽  
...  

Pleistocene water bodies have been studied using the paleolimnological approach, which traces environmental changes using particular subfossils as ecological proxies, rather than analysis of the paleocommunities themselves. Within a given taphocoenosis, the presence and quantity of animals are related to environmental conditions rather than to community types where relationships between taxa are stabilized during their long-term co-occurrence and are (at least partially) more important than the particular environmental conditions at the time of deposition, which may have experienced significant seasonal and inter-seasonal variations. Here, we analyze Branchiopoda (Crustacea) of two paleolocalities in the Transbaikalian Region of Russia: Urtuy (MIS3) and Nozhiy (older than 1.5 million years). Cladocerans Daphnia (Ctenodaphnia) magna, D. (C.) similis, D. (Daphnia) pulex, Ceriodaphnia pulchella-reticulata, C. laticaudata, Simocephalus sp., Moina cf. brachiata, M. macropopa clade, Chydorus cf. sphaericus, Capmtocercus sp. and anostracans Branchinecta cf. paludosa, and Streptocephalus (Streptocephalus) sp. are found in two localities. With the exception of the last taxon, which now occurs in the southern Holarctic, all other taxa inhabit the Transbaikalian Region. Within Eurasia, the steppe zone has the greatest diversity of large branchiopods and a high diversity of some cladocerans, such as subgenus Daphnia (Ctenodaphnia) and Moina sp. Here we demonstrated that the branchiopod community in shallow steppe water bodies has been unchanged since at least the Pleistocene, demonstrating long-term morphological and ecological stasis.


2020 ◽  
Vol 161 ◽  
pp. 01059
Author(s):  
Elena Ostroukhova ◽  
Svetlana Levchenko ◽  
Irina Vasylyk ◽  
Vladimir Volynkin ◽  
Natalia Lutkova ◽  
...  

The profile of the phenolic components and features at the beginning of ripening (12.0 - 14.5 °Bx) and at the end of the observation (20.0-22.0 °Bx) of Crimean autochthonous white-berry grape cultivars are studied. The total content of identified phenolic compounds at the beginning of ripening differed depending on the cultivar from 669 mg kg-1 (Sauvignon Blanc) to 2411 mg kg-1 (Kokur Belyi). During the ripening period the content of components in berries of autochthonous grape cultivars decreased on average by 3.5 times of initial values (Kokur Belyi – by 4.1 times). In classic cultivars, this parameter did not change. The lowest concentration of phenolic components was observed in Shabash (256 mg kg-1) at 20.0-22.0 °Bx, the highest - in Riesling (1006 mg kg-1) and Chardonnay (827 mg kg-1). The hierarchical analysis of a cluster on a subject of total phenolic components revealed the similarity of autochthone Kokur Belyi to classic cultivars Chardonnay and Sauvignon Blanc. Autochthonous grape cultivars Sary Pandas and Shabash are closely related and form a separate cluster.


2020 ◽  
Vol 28 (3) ◽  
pp. 1189-1212
Author(s):  
Martin Zimmermann ◽  
Franz Wotawa

Abstract Having systems that can adapt themselves in case of faults or changing environmental conditions is of growing interest for industry and especially for the automotive industry considering autonomous driving. In autonomous driving, it is vital to have a system that is able to cope with faults in order to enable the system to reach a safe state. In this paper, we present an adaptive control method that can be used for this purpose. The method selects alternative actions so that given goal states can be reached, providing the availability of a certain degree of redundancy. The action selection is based on weight models that are adapted over time, capturing the success rate of certain actions. Besides the method, we present a Java implementation and its validation based on two case studies motivated by the requirements of the autonomous driving domain. We show that the presented approach is applicable both in case of environmental changes but also in case of faults occurring during operation. In the latter case, the methods provide an adaptive behavior very much close to the optimal selection.


Weed Science ◽  
1982 ◽  
Vol 30 (5) ◽  
pp. 498-502 ◽  
Author(s):  
Jeffrey F. Derr ◽  
Thomas J. Monaco

In greenhouse studies, soil organic matter reduced the herbicidal activity of ethalfluralin (N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl)benzenamine). Fifty percent inhibition (I5.0) values for barnyardgrass [Echinochloa crus-galli(L.) Beauv.] stand, injury, and shoot fresh weight increased as the soil organic-matter level increased. No difference in ethalfluralin tolerance was found among 16 cucumber (Cucumis sativusL.) cultivars. When grouped according to market type, fresh market cultivars tended to be injured more than pickling cultivars by excess ethalfluralin. Both shoots and roots of cucumber absorbed the herbicide, but exposure of roots to ethalfluralin was more toxic than exposure of shoots. Field studies indicated that with certain edaphic and environmental conditions, cucumbers can be injured by preemergence applications of ethalfluralin. Injury was greatest in a low organic-matter soil following a heavy rain. Ethalfluralin at 1.3 kg/ha gave adequate weed control in 1 and 3% organic-matter soils, but not in a 9% organic-matter soil.


2006 ◽  
Vol 144 (3) ◽  
pp. 221-227 ◽  
Author(s):  
J. K. SAINIS ◽  
S. P. SHOUCHE ◽  
S. G. BHAGWAT

Varietal identification is an important aspect of crop research and utilization. Identification using computer-based image analysis could be an alternative to visual identification. However, the effectiveness of image analysis systems needs to be established under various real conditions. Three wheat varieties were sown on three different dates. Variation in the grain size and shape of these varieties, brought about by changes in the environmental conditions, was measured using Comprehensive Image Processing Software (CIPS). Some parameters showed considerable grain-to-grain variation, which was either inherent or due to environmental changes during grain filling. Euclidean distances were calculated using either means of all the parameters (ED1), or using only those parameters that did not show a high coefficient of variation (ED2). For samples of the same variety sown at different times, Euclidean distances were smaller compared with samples of different varieties, indicating that grains of the same variety resembled one another. By using the criterion of minimum Euclidean distance it was possible to distinguish between varieties, in spite of variation in grain shape and size due to environmental conditions. It was possible to identify correctly an unknown sample, taken as a test case.


Sign in / Sign up

Export Citation Format

Share Document