scholarly journals Structural Characterization and Antioxidant Activity of Polysaccharides from Athyrium multidentatum (Doll.) Ching in d-Galactose-Induced Aging Mice via PI3K/AKT Pathway

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3364 ◽  
Author(s):  
Liang Jing ◽  
Jing-Ru Jiang ◽  
Dong-Mei Liu ◽  
Ji-Wen Sheng ◽  
Wei-Fen Zhang ◽  
...  

The purpose of this study was to characterize the polysaccharides from Athyrium multidentatum (Doll.) Ching (AMC) rhizome and explore the protective mechanism against d-galactose-induced oxidative stress in aging mice. Methods: A series of experiments, including molecular weight, monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, and 1H nuclear magnetic resonance (1H NMR) spectroscopy were carried out to characterize AMC polysaccharides. The mechanism was investigated exploring d-galactose-induced aging mouse model. Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blotting assays were performed to assess the gene and protein expression in liver. Key findings: Our results showed that AMC polysaccharides were mainly composed of mannose (Man), rhamnose (Rha), glucuronic acid (Glc A), glucose (Glc), galactose (Gal), arabinose (Ara), and fucose (Fuc) in a molar ratio of 0.077:0.088:0.09:1:0.375:0.354:0.04 with a molecular weight of 33203 Da (Mw). AMC polysaccharides strikingly reversed d-galactose-induced changes in mice, including upregulated phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor-erythroid 2-related factor 2 (Nrf2), forkhead box O3a (FOXO3a), and hemeoxygenase-1 (HO-1) mRNA expression, raised Bcl-2/Bax ratio, downregulated caspase-3 mRNA expression, enhanced Akt, phosphorylation of Akt (p-Akt), Nrf2 and HO-1 protein expression, decreased caspase-3, and Bax protein expression. Conclusion: AMC polysaccharides attenuated d-galactose-induced oxidative stress and cell apoptosis by activating the PI3K/AKT pathway, which might in part contributed to their anti-aging activity.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ali A. El Gamal ◽  
Mansour S. AlSaid ◽  
Mohammad Raish ◽  
Mohammed Al-Sohaibani ◽  
Shaza M. Al-Massarani ◽  
...  

The present investigation was designed to investigate the protective effect of (Beta vulgarisL.) beat root ethanolic extract (BVEE) on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific kidney function parameters (urea, uric acid, total protein, creatinine, and histopathology of kidney tissue) were evaluated to access gentamicin-induced nephrotoxicity. The oxidative/nitrosative stress (Lipid peroxidation, MDA, NP-SH, Catalase, and nitric oxide levels) was assessed. The inflammatory response (TNF-α, IL-6, MPO, NF-κB (p65), and NF-κB (p65) DNA binding) and apoptotic marker (Caspase-3, Bax, and Bcl-2) were also evaluated. BVEE (250 and 500 mg/kg) treatment along with gentamicin restored/increased the renal endogenous antioxidant status. Gentamicin-induced increased renal inflammatory cytokines (TNF-αand IL-6), nuclear protein expression of NF-κB (p65), NF-κB-DNA binding activity, myeloperoxidase (MPO) activity, and nitric oxide level were significantly down regulated upon BVEE treatment. In addition, BVEE treatment significantly reduced the amount of cleaved caspase 3 and Bax, protein expression and increased the Bcl-2 protein expression. BVEE treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. These findings suggest that BVEE treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, inflammation, and apoptosis in the kidney.


Open Medicine ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. 468-475 ◽  
Author(s):  
XiaoQiang Tian ◽  
LiDa Zhang ◽  
JingMei Wang ◽  
JianGuo Dai ◽  
ShanShan Shen ◽  
...  

AbstractAlzheimer’s disease is characterized by the accumulation and deposition of Aβ peptides in human brains. Aβ peptides are toxic to neurons by lots of mechanisms of which Aβ induced oxidative stress is one of the hypothesis. The present study aimed to determine the effect of Hyperbaric oxygen (HBO) on Aβ25–35 induced cognitive deficits and oxidative stress and apoptosis effects in rats. Rats were given an injection of aggregated Aβ25–35. After treatment with HBO for 20days, the learning and memory ability, hippocampus neuronal apoptosis, the activity of SOD, GSH content and the MDA level and mRNA and proteins expression of Bcl-2 and Bax were detected. Our results demonstrated that HBO could significantly improved the apoptosis hippocampus neuronal induced by Aβ25–35, involving the improvement of the learning and memory impairment, which accompanied of increasing the gene and protein expression of bcl-2 and enhancing the activity of SOD and GSH content. These findings suggest that treatment of HBO might prevent the Aβ25–35 induced learning and memory impairment by increasing the gene and protein expression of bcl-2 and enhancing the activity of SOD and GSH content to alleviate the apoptosis hippocampus neuronal. This suggests that HBO may be a potential therapeutic agent for AD.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Weijian Bei ◽  
Yujiao Wang ◽  
Jianmei Chen ◽  
Jingjing Zhang ◽  
Lexun Wang ◽  
...  

Objective. To investigate the effect of FTZ on high-glucose-induced oxidative stress and underlying mechanisms. Methods. We used a β cell dysfunction and diabetes model that was induced in rats fed a high-fat high-sugar diet (HFHSD) for 6 weeks and injected once with 35 mg/kg streptozocin (STZ). Then, 3 and 6 g/kg of FTZ were administered by gavage for 8 weeks. In addition, an ex vivo model of oxidative stress was induced by stimulating INS-1 cells with 25 mmol/L glucose for 48 h. Result. The levels of fasting blood glucose (FBG) in diabetic model rats were obviously higher than those in the normal group; furthermore with reduced levels of β cells, catalase (CAT), superoxide dismutase (SOD), and Bcl-2 increased lipid peroxide malondialdehyde (MDA) and caspase-3 in the pancreatic tissue of the diabetic model rats. Afterward, the cells were incubated with FTZ-containing serum and edaravone. The 25 mmol/L glucose-induced SOD reduction increased MDA and intracellular ROS. The protein expression level of Mn-SOD and CAT in the model group decreased significantly compared with that in the control group. Conclusion. FTZ treatment significantly improved the alteration in the level of SOD, CAT, Bcl-2, caspase-3, and MDA coupled with β cell dysfunction in diabetic rats. Oxidative stress in INS-1 cells was closely associated with a higher rate of apoptosis, increased production of ROS and MDA, enhanced Bax expression, and caspase-3, -9 activities and markedly decreased protein expression of Mn-SOD and CAT. FTZ-containing serum incubation notably reversed the high-glucose-evoked increase in cell apoptosis, production of ROS and MDA, and Bax protein levels. Furthermore, FTZ stimulation upregulated the expression levels of several genes, including Mn-SOD, CAT, and Bcl-2/Bcl-xl. In addition, FTZ decreased the intracellular activity of caspase-3, -9 in INS-1 cells. FTZ protected β-cells from oxidative stress induced by high glucose in vivo and in vitro. The beneficial effect of FTZ was closely associated with a decrease in the activity of caspase-3, -9 and intracellular production of ROS, MDA, and Bax coupled with an increase in the expression of Mn-SOD, CAT, and Bcl-2/Bcl-xl.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bruna Bezerra Lins ◽  
Fernando Augusto Malavazzi Casare ◽  
Flávia Ferreira Fontenele ◽  
Guilherme Lopes Gonçalves ◽  
Maria Oliveira-Souza

High plasma angiotensin II (Ang II) levels are related to many diseases, including hypertension, and chronic kidney diseases (CKDs). Here, we investigated the relationship among prolonged Ang II infusion/AT1 receptor (AT1R) activation, oxidative stress, and endoplasmic reticulum (ER) stress in kidney tissue. In addition, we explored the chronic effects of Ang II on tubular Na+ transport mechanisms. Male Wistar rats were subjected to sham surgery as a control or prolonged Ang II treatment (200 ng⋅kg–1⋅min–1, 42 days) with or without losartan (10 mg⋅kg–1⋅day–1) for 14 days. Ang II/AT1R induced hypertension with a systolic blood pressure of 173.0 ± 20 mmHg (mmHg, n = 9) compared with 108.0 ± 7 mmHg (mmHg, n = 7) in sham animals. Under these conditions, gene and protein expression levels were evaluated. Prolonged Ang II administration/AT1R activation induced oxidative stress and ER stress with increased Nox2, Nox4, Cyba and Ncf1 mRNA expression, phosphorylated PERK and eIF2α protein expression as well as Atf4 mRNA expression. Ang II/AT1R also raised Il1b, Nfkb1 and Acta2 mRNA expression, suggesting proinflammatory, and profibrotic effects. Regarding Na+ tubular handling, Ang II/AT1R enhanced cortical non-phosphorylated and phospho/S552/NHE3, NHE1, ENaC β, NKCC2, and NCC protein expression. Our results also highlight the therapeutic potential of losartan, which goes beyond the antihypertensive effect, playing an important role in kidney tissue. This treatment reduced oxidative stress and ER stress signals and recovered relevant parameters of the maintenance of renal function, preventing the progression of Ang II-induced CKD.


Reproduction ◽  
2015 ◽  
Vol 149 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Martyna Łupicka ◽  
Gabriel Bodek ◽  
Nahum Shpigel ◽  
Ehud Elnekave ◽  
Anna J Korzekwa

The aim of this study was to identify uterine pluripotent cells both in bovine uterine tissues as well in epithelial, stromal, and myometrial uterine cell populations. Moreover, the relationship of pluripotent markers expression with age and the uterine horn side was considered. Uterine tissue was collected from ipsilateral and contralateral horns (days 8–10 of the estrous cycle). Immunohistostaining for C-KIT, OCT3/4, NANOG, and SOX2 in uterine tissue was determined. mRNA expression of C-KIT, OCT3/4, NANOG and SOX2 was evaluated in uterine tissue relative to the age of the cow and uterine horn side. Gene and protein expression of these markers in the uterine luminal epithelial, stromal, and myometrial cells was evaluated by real-time PCR and western blotting respectively. The expression of pluripotent cell markers OCT3/4, NANOG, and SOX2 was identified by flow cytometry assay in epithelial, stromal, and myometrial cells. Multilineage differentiation of the bovine uterine cells was performed. mRNA expression of OCT3/4, NANOG, and SOX2 in uterine tissue was higher in the ipsilateral horn than in the contralateral horn. Flow cytometry assay revealed positive fluorescence for OCT3/4, NANOG, and SOX2 in all uterine cell types. Results showed the age-dependent expression of pluripotent markers in uterine tissue. Beside, the different expression of pluripotent cells in each horn of uterus suggests the influence of ovarian hormones on these characteristics. The highest mRNA and protein expression for pluripotent markers was observed in stromal cells among uterine cells, which indicates this population of cells as the main site of pluripotent cells in the cow uterus.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2371
Author(s):  
Selma Benito-Martínez ◽  
Bárbara Pérez-Köhler ◽  
Marta Rodríguez ◽  
Francisca García-Moreno ◽  
Verónica Gómez-Gil ◽  
...  

Prosthetic mesh infection is a devastating complication of abdominal hernia repair which impairs natural healing in the implant area, leading to increased rates of patient morbidity, mortality, and prolonged hospitalization. This preclinical study was designed to assess the effects on abdominal wall tissue repair of coating meshes with a chlorhexidine or rifampicin-carboxymethylcellulose biopolymer gel in a Staphylococcus aureus (S. aureus) infection model. Partial abdominal wall defects were created in New Zealand white rabbits (n = 20). Four study groups were established according to whether the meshes were coated or not with each of the antibacterial gels. Three groups were inoculated with S. aureus and finally repaired with lightweight polypropylene mesh. Fourteen days after surgery, implanted meshes were recovered for analysis of the gene and protein expression of collagens, macrophage phenotypes, and mRNA expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Compared to uncoated meshes, those coated with either biopolymer gel showed higher collagen 1/3 messenger RNA and collagen I protein expression, relatively increased VEGF mRNA expression, a significantly reduced macrophage response, and lower relative amounts of MMPs mRNAs. Our findings suggest that following mesh implant these coatings may help improving abdominal wall tissue repair in the presence of infection.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Shiqiang Wang

Objective To investigate the effects of exercise on the myocardial oxidative stress injury of diabetic rats, and discussed the role of Keap1/Nrf2 signaling pathway in this process Methods  Tyep 2 diabetic rat model was established by streptozotocin injection through abdominal cavity and high fat diet. The all the diabetic rats were divided into three groups: control group (NC), diabetes group(T2DM) and diabetes exercise group, NC and T2DM group were kept quiet for 8 weeks, T2DME group was trained for 8 weeks. After the exercise, weight, heart weight and blood were measured. MDA, T-SOD and GSH-PX enzyme were measured by biochemical method. Ho-1, Keap1, Nrf2 gene and protein expression were detected by RT-PCR and WesternBlotting. Results Compared with NC group, the weight of rats in the T2DM group significantly decreased [(528+/-71g vs 362+/-33g), P<0.05], HWI  significantly increased [(2.845+/-0.22 vs 3.841+/-0.21, P <0.05], blood glucose was significantly increased [(6.4±3.8 vs 26±7.5mmol/L), P <0.01],T-SOD and GSH-PX activity decreased significantly (P<0.05), Ho-1 protein expression increased (P<0.01), Keap1 and Nrf2 showed no significant changes, and Nrf2 nuclear transposition decreased (P<0.05). Compared with the T2DM group, no significant change in body weight and heart weight in the T2DME group, with significant decrease in HWI[(3.841±0.21 vs 3.235±0.23),P<0.05], with significant decrease in blood glucose [(26.0±7.5 vs 21.0±6.8),P<0.05]. Ho-1 gene and protein expression increased significantly(P<0.05and P<0.01), with no significant change of Keap1, while Nrf2 expression increased significantly (P < 0.05), and Nrf2 nuclear transposition increased significantly (P < 0.01). Conclusions Exercise activates the myocardial Keap1/Nrf2 signaling pathway in rats, promotes the expression of downstream antioxidant enzymes, increases cardiac antioxidant capacity, and resists diabetic myocardial oxidative stress injury.


2020 ◽  
Vol 40 (1) ◽  
pp. 71-80
Author(s):  
N Kong ◽  
Y Bao ◽  
H Zhao ◽  
X Kang ◽  
X Tai ◽  
...  

Methylphenidate (MPH) is used as the first-line treatment for attention-deficit hyperactivity disorder. However, there are concerns that this treatment may be associated with increased risk of retinal damage. This study was to investigate cytotoxicity of MPH on photoreceptor cells and explore its underlying mechanisms. MPH-caused cell toxicity was established in 661 W cells. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium-bromid and lactate dehydrogenase assays. Oxidative stress was measured by the markers: glutathione (GSH) reductase, catalase, and superoxide dismutase activities as well as GSH, reactive oxygen species, and malondialdehyde levels. Gene and protein expression was detected by real-time polymerase chain reaction (PCR) and western blot, respectively. Results showed that MPH decreased 661 W cell viability, increased caspase-3/9 activities, and induced oxidative stress. Furthermore, MPH treatment increased messenger RNA (mRNA) expression of Beclin-1 and microtubule-associated protein 1A/1B-light chain 3B (LC3B) protein expression in 661 W cells, suggesting autophagy was induced. MPH treatment also upregulated p-JAK1/p-STAT1 protein expression. These data demonstrated that MPH could increase oxidative stress in photoreceptor cells to cause cell toxicity via autophagy, providing the scientific rationale for the photoreceptor cell damage caused by the MPH administration.


Sign in / Sign up

Export Citation Format

Share Document