scholarly journals Removal of V(V) From Solution Using a Silica-Supported Primary Amine Resin: Batch Studies, Experimental Analysis, and Mathematical Modeling

Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1448
Author(s):  
Xi Huang ◽  
Zhenxiong Ye ◽  
Lifeng Chen ◽  
Xujie Chen ◽  
Caocong Liu ◽  
...  

Every year, a large quantity of vanadium-containing wastewater is discharged from industrial factories, resulting in severe environmental problems. In particular, V(V) is recognized as a potentially hazardous contaminant due to its high mobility and toxicity, and it has received considerable attention. In this study, a silica-supported primary amine resin (SiPAR) was prepared by in-situ polymerization, and the V(V) adsorption from the solution was examined. The as-prepared resin exhibited fast adsorption kinetics, and it could attain an equilibrium within 90 min for the V(V) solution concentration of 100 mg/L at an optimum pH of 4, whereas the commercial D302 resin required a treatment time of more than 3 h under the same conditions. Furthermore, the maximum adsorption capacity of the resin under optimum conditions for V(V) was calculated to be 70.57 mg/g. In addition, the kinetics and isotherm data were satisfactorily elucidated with the pseudo-second-order kinetics and Redlich–Peterson models, respectively. The silica-based resin exhibited an excellent selectivity for V(V), and the removal efficiency exceeded 97% in the presence of competitive anions at 100 mmol/L concentrations. The film mass-transfer coefficient (kf) and V(V) pore diffusivity (Dp) onto the resins were estimated by mathematical modeling. In summary, this study provided a potential adsorbent for the efficient removal of V(V) from wastewater.

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Sara A. Alqarni

The in-situ polymerization technology was used to successfully produce nanostructured binary nanocomposites (NCs) made from a poly (3-nitrothiophen) matrix (P3NT) that were loaded effectively with nanoparticles (NPs) of silver titanium dioxide (AgTiO2), of varying percentages (10%, 20%, and 30%). A uniform coating of P3NT covers the AgTiO2 NPs. Various methods were performed to confirm the fabrication of the binary P3NT/AgTiO2 NCs adsorbents, such as FTIR, XRD, SEM, and EDX. Both dyes (brilliant green (B.G.) and crystal violet (C.V.)) were removed from liquid media by using the binary P3NT/AgTiO2 NCs. A range of batch adsorption studies was used to optimize various factors that impact the elimination of B.G. or C.V. dyes, including the pH, weight of the binary P3NT/AgTiO2 NC, proportion of AgTiO2 NP, time, and temperature. The pseudo-second-order kinetics ( R 2 = 0.999 ) was better adapted for the adsorption procedure’s empirical data whereby the maximum adsorption capacity of the C.V. dye was 43.10 mg/g and ( R 2 = 0.996 ) the maximum adsorption potential was 40.16 mg/g for B.G. dye, succeeded by the pseudo-second-order kinetics. Moreover, the adhesion of B.G. and C.V. pigments on the layers of NCs involves an endothermic reaction. In addition, the concocted adsorbent not only exhibited strong adsorption characteristics during four consecutive cycles but also possessed a higher potential for its reuse. According to the findings, the NCs might possibly be used as a robust and reusable adsorbent to remove B.G. and C.V. pigments from an aqueous medium.


2016 ◽  
Vol 42 (2) ◽  
pp. 3-11 ◽  
Author(s):  
Gabriela Ciobanu ◽  
Simona Barna ◽  
Maria Harja

AbstractIn the present study the adsorption of Reactive Blue 19 dye on the hydroxyapatite (HAp) nanopowders was investigated. The batch adsorption experiments were performed by monitoring the adsorbent dosage, contact time, dye solution concentration, pH and temperature. At pH 3 and 20°C, high dye removal rates of about 95.58% and 86.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicated the dye adsorption onto nanohydroxyapatite samples to follow a pseudo-second order model. The Langmuir isotherm was found to be the best to represent the equilibrium with experimental data. The maximum adsorption capacity of uncalcined and calcined nanohydroxyapatite samples has been found to be 90.09 mg/g and 74.97 mg/g, respectively.


2013 ◽  
Vol 750-752 ◽  
pp. 47-50
Author(s):  
Wen Juan He ◽  
Yu Feng He ◽  
Zhen Hua Zhang ◽  
Ju Hua Guo ◽  
Rong Min Wang

In this paper, a new kind of clay copolymer adsorbent, bentonite compositing with maleic anhydride (MAH)-acrylic acid (AA)-vinyl acetate (VAc) copolymer (NaB/PMAV) was prepared by in-situ polymerization. It was used as polymer adsorbent for removing Pb (II) ions in wastewater.. Under the optimal condition of adsorption, the removal rate reached to 94.4% and the adsorption capacity got to 235.9 mg/g. Adsorption dynamics were consistent with pseudo-second-order kinetic model and isotherm model can meet the Langmuir isotherm.


2014 ◽  
Vol 70 (7) ◽  
pp. 1236-1243 ◽  
Author(s):  
Jun Chen ◽  
Xiaoqin Hong ◽  
Qingdong Xie ◽  
Diankai Li ◽  
Qianfeng Zhang

Polyaniline/sepiolite (PANI/sepiolite) nanofibers were prepared by in situ chemical oxidation polymerization in the presence of sepiolite. The effect of aniline/sepiolite weight ratio on the nanostructure of PANI/sepiolite composites was investigated by field-emission scanning electron microscopy. The adsorption of Cr(VI) onto the PANI/sepiolite nanofibers was highly dependent on pH values. The pseudo-second-order and Langmuir isothermal models can well describe the adsorption kinetics and adsorption isotherm, respectively. The maximum adsorption capacity of the PANI/sepiolite nanofibers for Cr(VI) was up to 206.6 mg/g at 25 °C and increased with the increase in temperature. Desorption experiments indicated that PANI/sepiolite can be regenerated and reused for two consecutive cycles with no loss of its removal efficiency. PANI/sepiolite nanofibers can be used as a highly efficient and economically viable adsorbent for Cr(VI) removal due to their excellent adsorption characteristics.


2021 ◽  
Vol 15 (3) ◽  
pp. 377-388
Author(s):  
Sadek Chentouf ◽  
◽  
Smail Kacha ◽  
Réda Marouf ◽  
Fouad Mekhalef Benhafsa ◽  
...  

Synthesis, characterization and application of the polyaniline-diatomite (PAD) composite in the adsorption of Reactive Red 120 (RR 120) and Acid Blue (AB) dyes were carried out. The composite was prepared by the in situ polymerization of aniline. Mass of purified diatomite was mixed with a solution containing aniline dissolved in 2M hydrochloric acid at room temperature. The solid obtained was characterized using the SEM, XRD and FTIR analyses. The kinetic adsorption of dyes was described using the pseudo-second order kinetic model. The adsorption isotherm of the RR 120 dye can be fitted by the Freundlich adsorption isotherm model. However, the adsorption isotherm of the AB dye can be better fitted by the BET model.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 686 ◽  
Author(s):  
Linlin Du ◽  
Peng Gao ◽  
Yuanli Liu ◽  
Tsuyoshi Minami ◽  
Chuanbai Yu

The removal of Cr(VI) in wastewater plays an important role in human health and environment. In this work, polypyrrole/hollow mesoporous silica particle (PPy/HMSNs) adsorbents have been newly synthesized by in-situ polymerization, which prevent the aggregation of pyrrole in the process of polymerization and exhibit highly selective and powerful adsorption ability for Cr(VI). The adsorption process was in good agreement with the quasi-second-order kinetic model and the Langmuir isotherm model. And the maximum adsorption capacity of Cr(VI) was 322 mg/g at 25 °C. Moreover, the removal rate of Cr(VI) by PPy/HMSNs was ~100% in a number of binary systems, such as Cl−/Cr(VI), NO3−/Cr(VI), SO42−/Cr(VI), Zn2+/Cr(VI), Fe3+/Cr(VI), Sn4+/Cr(VI), and Cu2+/Cr(VI). Thus, the PPy/HMSNs adsorbents have great potential for the removal of Cr(VI) in wastewater.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 167 ◽  
Author(s):  
Yuanli Liu ◽  
Liushuo Song ◽  
Linlin Du ◽  
Peng Gao ◽  
Nuo Liang ◽  
...  

Surface-functionalized polymeric microspheres have wide applications in various areas. Herein, monodisperse poly(styrene–methyl methacrylate–acrylic acid) (PSMA) microspheres were prepared via emulsion polymerization. Polyaniline (PANI) was then coated on the PSMA surface via in situ polymerization, and a three-dimensional (3D) structured reticulate PANI/PSMA composite was, thus, obtained. The adsorption performance of the composite for organic dyes under different circumstances and the adsorption mechanism were studied. The obtained PANI/PSMA composite exhibited a high adsorption rate and adsorption capacity, as well as good adsorption selectivity toward methyl orange (MO). The adsorption process followed pseudo-second-order kinetics and the Langmuir isotherm. The maximum adsorption capacity for MO was 147.93 mg/g. After five cycles of adsorption–desorption, the removal rate remained higher than 90%, which indicated that the adsorbent has great recyclability. The adsorbent materials presented herein would be highly valuable for the removal of organic dyes from wastewater.


2012 ◽  
Vol 65 (8) ◽  
pp. 1383-1391 ◽  
Author(s):  
Y. F. He ◽  
L. Zhang ◽  
D. Z. Yan ◽  
S. L. Liu ◽  
H. Wang ◽  
...  

In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5–60 min), initial concentration of metal ions (200–1,000 mg/L) and adsorbent dosage (0.04–0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).


NANO ◽  
2016 ◽  
Vol 11 (02) ◽  
pp. 1650013 ◽  
Author(s):  
Ranran Li ◽  
Jieyi Yu ◽  
Asif Shah ◽  
Xinglong Dong ◽  
Xiaona Li ◽  
...  

Core/shell type carbon-coated Fe nanocapsules (Fe@C NCs) were in situ synthesized by DC arc-discharge plasma method in methane atmosphere. Such Fe nanocapsules have saturation magnetization of 29.32[Formula: see text]emu/g and specific surface area of 85.86[Formula: see text]m2/g. The carbon shell of Fe@C NCs was functionalized with oxygen-containing groups (such as –OH or –COOH) by using H2O2. The adsorption of organic dye, e.g., methylene blue (MB) was systematically investigated in different conditions, such as contact time, pH values and temperature. The maximum adsorption capacity (46.5[Formula: see text]mg/g) was calculated by fitting the adsorption isotherms with Langmuir model, coincident with the experimental result of 44.5[Formula: see text]mg/g. Kinetics data supported pseudo-second order model, and the thermodynamic process of adsorption was revealed as endothermic and spontaneous physisorption. The MB-absorbed Fe@C NCs can be entirely separated from the contaminative solution by a magnetic field and then successfully cycled for regeneration. After repetitive cycles of the adsorption/desorption experiments for five times, the removal efficiency can be maintained over 90%.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 559
Author(s):  
Abubakr Elkhaleefa ◽  
Ismat H. Ali ◽  
Eid I. Brima ◽  
Ihab Shigidi ◽  
Ahmed. B. Elhag ◽  
...  

The efficiency of Azadirachta indica (neem leaves) on the removal of Pb(II) ions by adsorption from aqueous solution was investigated in this study. The efficiency of these leaves (without chemical or thermal treatment) for the adsorption of Pb(II) ions has not previously been reported. Batch experiments were performed to study the effect of the particle size, pH, adsorbent dose, contact time, initial Pb(II) ion concentration, and temperature. The maximum removal of 93.5% was achieved from an original Pb(II) ion solution concentration of 50 mg/L after 40 min, at pH 7, with 0.60 g of an adsorbent dose. The maximum adsorption capacity recorded was 39.7 mg/g. The adsorption process was also studied by examining Langmuir, Freundlich, Temkin isotherm, and Dubinin–Radushkevich (D-R) isotherm models. The results revealed that the adsorption system follows the pseudo-second-order model and fitted the Freundlich model. Several thermodynamic factors, namely, the standard free energy (∆G°), enthalpy (∆H°), and entropy (∆S°) changes, were also calculated. The results demonstrated that the adsorption is a spontaneous, physical, and exothermic process. The surface area, pore size, and volume of adsorbent particles were measured and presented using a surface area analyzer (BET); the morphology was scanned and presented with the scanning electron microscope technique (SEM); and the functional groups were investigated using μ-FTIR.


Sign in / Sign up

Export Citation Format

Share Document