scholarly journals Research Progress in Conversion of CO2 to Valuable Fuels

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3653 ◽  
Author(s):  
Luyi Xu ◽  
Yang Xiu ◽  
Fangyuan Liu ◽  
Yuwei Liang ◽  
Shengjie Wang

Rapid growth in the world’s economy depends on a significant increase in energy consumption. As is known, most of the present energy supply comes from coal, oil, and natural gas. The overreliance on fossil energy brings serious environmental problems in addition to the scarcity of energy. One of the most concerning environmental problems is the large contribution to global warming because of the massive discharge of CO2 in the burning of fossil fuels. Therefore, many efforts have been made to resolve such issues. Among them, the preparation of valuable fuels or chemicals from greenhouse gas (CO2) has attracted great attention because it has made a promising step toward simultaneously resolving the environment and energy problems. This article reviews the current progress in CO2 conversion via different strategies, including thermal catalysis, electrocatalysis, photocatalysis, and photoelectrocatalysis. Inspired by natural photosynthesis, light-capturing agents including macrocycles with conjugated structures similar to chlorophyll have attracted increasing attention. Using such macrocycles as photosensitizers, photocatalysis, photoelectrocatalysis, or coupling with enzymatic reactions were conducted to fulfill the conversion of CO2 with high efficiency and specificity. Recent progress in enzyme coupled to photocatalysis and enzyme coupled to photoelectrocatalysis were specially reviewed in this review. Additionally, the characteristics, advantages, and disadvantages of different conversion methods were also presented. We wish to provide certain constructive ideas for new investigators and deep insights into the research of CO2 conversion.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ziping Wang ◽  
Xian Xue ◽  
He Yin ◽  
Zhengxuan Jiang ◽  
Yefei Li

Lubricant failure or irrational lubrication is the root cause of industrial equipment failure. By monitoring the distribution of the suspended particles in lubricants, it is possible to discover hidden lubrication problems. After taking the lubricating oil samples of industrial equipment, the oil monitoring technology is used to analyze the particle size distribution and the type and content of the abrasive particles by electrical, magnetic, and optical monitoring techniques. It is necessary to separate the suspended particles in oils with impurities by some method to eliminate potential safety hazards and ensure the reuse efficiency of the lubricant. In this paper, the principles, advantages, and disadvantages of several important oil monitoring methods are described, and new developments in various methods are analyzed. Several typical methods for separation of the suspended particles in purified oils were introduced. The advantages and disadvantages of each process were summarized. The development direction of lubricant monitoring technology was pointed out, and guidance was provided for the separation and online monitoring of the suspended particles in lubricants. Finally, compared with similar review papers, this paper specifically figured out that ultrasonic separation method has the advantages of real time, high efficiency, and no pollution and has important application value for micron-scale particle separation of large precision machines.


2021 ◽  
Vol 261 ◽  
pp. 04002
Author(s):  
Yuxin Sun ◽  
Jiaying Xu ◽  
Meixuan He ◽  
Yixuan Tang ◽  
Leichang Cao

Traditional fossil fuels are being replaced by pyrolytic carbonization fuel from agricultural and forestry biomass to address the energy shortage crisis and the environmental pollution caused by the massive burning of fossil fuels in recent years. This paper introduces the research progress in the preparation of agriculture and forestry biomass pyrolysis carbonization molding fuel. The advantages and disadvantages of different biomass conversion technology are presented. The effects of different technological parameters on the preparation of pyrolytic carbon from agricultural and forestry biomass waste were reviewed. Agriculture and forestry biomass combustion characteristics and their regularity are analyzed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yun-Tao Wu ◽  
Tian-Hu Wang ◽  
Jin Hua ◽  
He-Yuan Sun

Background: Pulverized coal detection is an indispensable detection measure in the coal industry. The current detection devices can be divided into two types: invasive and non-invasive. The coal dust detection methods and devices based on acoustics, optics, and electricity have been extensively studied. In order to achieve a high-efficiency online detection scheme, improving the accuracy and stability of the detection means is the primary goal of the research. Objective: The general problems and characteristics of coal dust detection device design are summarized, as well as recent technological developments and the needs for online testing to predict future research trends. Methods: The current typical detection devices are classified according to the detection principle and whether they invade the target, analyzing its advantages and disadvantages according to the device performance and application scenarios. Results: It has a beneficial effect on the design of the pulverized coal concentration detection device. Conclusion: The paper summarizes and analyzes several representative coal concentration detection device patents in recent years. Then it points out advantages and main problems. On this basis, the main development direction of the coal dust concentration detection device in the future is discussed.


2020 ◽  
pp. 1-18
Author(s):  
Yu.V. Bilokopytov ◽  
◽  
S.L. Melnykova ◽  
N.Yu. Khimach ◽  
◽  
...  

CO2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO2 conversion processes is analyzed. It is noted that the main active components of CO2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of DME from CO2 and H2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface. The synthesis of gasoline hydrocarbons (≥ C5) is carried out through the formation of CO or CH3OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO2 into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems. Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO2 conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.


2019 ◽  
Vol 26 (11) ◽  
pp. 1946-1959 ◽  
Author(s):  
Le Minh Tu Phan ◽  
Lemma Teshome Tufa ◽  
Hwa-Jung Kim ◽  
Jaebeom Lee ◽  
Tae Jung Park

Background:Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB.Objective:This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials.Methods:The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications.Results:Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded.Conclusion:This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.


2020 ◽  
Vol 21 (13) ◽  
pp. 996-1008
Author(s):  
Mengli Wang ◽  
Qiuzheng Du ◽  
Lihua Zuo ◽  
Peng Xue ◽  
Chao Lan ◽  
...  

Background: As a new tumor therapy, targeted therapy is becoming a hot topic due to its high efficiency and low toxicity. Drug effects of targeted tumor drugs are closely related to pharmacokinetics, so it is important to understand their distribution and metabolism in vivo. Methods: A systematic review of the literature on the metabolism and distribution of targeted drugs over the past 20 years was conducted, and the pharmacokinetic parameters of approved targeted drugs were summarized in combination with the FDA's drug instructions. Targeting drugs are divided into two categories: small molecule inhibitors and monoclonal antibodies. Novel targeting drugs and their mechanisms of action, which have been developed in recent years, are summarized. The distribution and metabolic processes of each drug in the human body are reviewed. Results: In this review, we found that the distribution and metabolism of small molecule kinase inhibitors (TKI) and monoclonal antibodies (mAb) showed different characteristics based on the differences of action mechanism and molecular characteristics. TKI absorbed rapidly (Tmax ≈ 1-4 h) and distributed in large amounts (Vd > 100 L). It was mainly oxidized and reduced by cytochrome P450 CYP3A4. However, due to the large molecular diameter, mAb was distributed to tissues slowly, and the volume of distribution was usually very low (Vd < 10 L). It was mainly hydrolyzed and metabolized into peptides and amino acids by protease hydrolysis. In addition, some of the latest drugs are still in clinical trials, and the in vivo process still needs further study. Conclusion: According to the summary of the research progress of the existing targeting drugs, it is found that they have high specificity, but there are still deficiencies in drug resistance and safety. Therefore, the development of safer and more effective targeted drugs is the future research direction. Meanwhile, this study also provides a theoretical basis for clinical accurate drug delivery.


2020 ◽  
Vol 13 (3) ◽  
pp. 230-241
Author(s):  
Ye Dai ◽  
Hui-Bing Zhang ◽  
Yun-Shan Qi

Background: Valves are an important part of nuclear power plants and are the control equipment used in nuclear power plants. It can change the cross-section of the passage and the flow direction of the medium and has the functions of diversion, cutoff, overflow, and the like. Due to the earthquake, the valve leaks, which will cause a major nuclear accident, endangering people's lives and safety. Objective: The purpose of this study is to synthesize the existing valve devices, summarize and analyze the advantages and disadvantages of various devices from many literatures and patents, and solve some problems of existing valves. Methods: This article summarizes various patents of nuclear-grade valve devices and recent research progress. From the valve structure device, transmission device, a detection device, and finally to the valve test, the advantages and disadvantages of the valve are comprehensively analyzed. Results: By summarizing the characteristics of a large number of valve devices, and analyzing some problems existing in the valves, the outlook for the research and design of nuclear power valves was made, and the planning of the national nuclear power strategic goals and energy security were planned. Conclusion: Valve damage can cause serious safety accidents. The most common is valve leakage. Therefore, the safety and reliability of valves must be taken seriously. By improving the transmission of the valve, the problems of complicated valve structure and high cost are solved.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Hoang Chinh Nguyen ◽  
My-Linh Nguyen ◽  
Chia-Hung Su ◽  
Hwai Chyuan Ong ◽  
Horng-Yi Juan ◽  
...  

Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3530
Author(s):  
Fukang Ma ◽  
Shuanlu Zhang ◽  
Zhenfeng Zhao ◽  
Yifang Wang

The hydraulic free-piston engine (HFPE) is a kind of hybrid-powered machine which combines the reciprocating piston-type internal combustion engine and the plunger pump as a whole. In recent years, the HFPE has been investigated by a number of research groups worldwide due to its potential advantages of high efficiency, energy savings, reduced emissions and multi-fuel operation. Therefore, our study aimed to assess the operating characteristics, core questions and research progress of HFPEs via a systematic review and meta-analysis. We included operational control, starting characteristics, misfire characteristics, in-cylinder working processes and operating stability. We conducted the literature search using electronic databases. The research on HFPEs has mainly concentrated on four kinds of free-piston engine, according to piston arrangement form: single piston, dual pistons, opposed pistons and four-cylinder complex configuration. HFPE research in China is mainly conducted in Zhejiang University, Tianjin University, Jilin University and the Beijing Institute of Technology. In addition, in China, research has mainly focused on the in-cylinder combustion process while a piston is free by considering in-cylinder combustion machinery and piston dynamics. Regarding future research, it is very important that we solve the instabilities brought about by chance fluctuations in the combustion process, which will involve the hydraulic system’s efficiency, the cyclical variation, the method of predicting instability and the recovery after instability.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Zhemin Du ◽  
Congmin Liu ◽  
Junxiang Zhai ◽  
Xiuying Guo ◽  
Yalin Xiong ◽  
...  

Nowadays, we face a series of global challenges, including the growing depletion of fossil energy, environmental pollution, and global warming. The replacement of coal, petroleum, and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2) energy is considered the ultimate energy in the 21st century because of its diverse sources, cleanliness, low carbon emission, flexibility, and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission, they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops, H2 fuel supply, especially H2 quality, attracts increasing attention. Compared with H2 for industrial use, the H2 purity requirements for fuel cells are not high. Still, the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore, we analyze the causes and developing trends for the changes in these standards in detail. On the other hand, according to characteristics of H2 for fuel cell vehicles, standard H2 purification technologies, such as pressure swing adsorption (PSA), membrane separation and metal hydride separation, were analyzed, and the latest research progress was reviewed.


Sign in / Sign up

Export Citation Format

Share Document