scholarly journals Spermidine Prevents Ethanol and Lipopolysaccharide-Induced Hepatic Injury in Mice

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1786
Author(s):  
Raghabendra Adhikari ◽  
Ruchi Shah ◽  
Karina Reyes-Gordillo ◽  
Jaime Arellanes-Robledo ◽  
Ying Cheng ◽  
...  

To date, there is no effective treatment for alcoholic liver disease, despite its prevalence world-wide. Because alcohol consumption is associated with oxidative stress-induced liver injury and pro-inflammatory responses, naturally occurring antioxidants and/or anti-inflammatories may be potential therapeutics. Spermidine is an abundant, ubiquitous polyamine that has been found to display strong antioxidant and anti-inflammatory properties. To further investigate whether spermidine is an effective intervention for alcohol-induced liver disease, we examined its hepatoprotective properties using a two-hit, chronic ethanol and acute lipopolysaccharide (LPS)-induced mouse model of liver injury. We determined that spermidine administration prevented ethanol and LPS-induced increases in liver injury using plasma ALT as a readout. Furthermore, histological analysis of tissue from control and treated animals revealed that the pathology associated with ethanol and LPS treatment was prevented in mice additionally treated with spermidine. As predicted, spermidine also prevented ethanol and LPS-induced oxidative stress by decreasing the levels of both reactive oxygen species (ROS) and lipid peroxidation. We further determined that spermidine treatment prevented the nuclear translocation of nuclear factor κB (NFκB) by blocking the phosphorylation of the inhibitory protein, IκB, thereby preventing expression of pro-inflammatory cytokines. Finally, by measuring expression of known markers of hepatic stellate cell activation and monitoring collagen deposition, we observed that spermidine also prevented alcohol and LPS-induced hepatic fibrosis. Together, our results indicate that spermidine is an antioxidant thereby conferring anti-inflammatory and anti-fibrotic effects associated with alcoholic liver injury.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Kezhen Shen ◽  
Xiaowen Feng ◽  
Hao Pan ◽  
Feng Zhang ◽  
Haiyang Xie ◽  
...  

Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL) in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA), and connective tissue growth factor (CTGF); increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2); increased oxidative stress and reactive oxygen species- (ROS-) inducing enzymes (NOX2 and iNOS); dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity). Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models.


2021 ◽  
Vol 14 (1) ◽  
pp. 123-131
Author(s):  
Doha M. Beltagy ◽  
Khloud Gamal Abdelsalam ◽  
Tarek M Mohamed ◽  
Mai M. El-Keey

Liver cirrhosis is currently the 11th most common cause of death which includes inflammatory, oxidative damage, and immune response. Harmaline has antioxidant and anti-inflammatory mechanisms which can defeat against hepatic cirrhosis pathways. The present work aimed to evaluate the ameliorating effect of harmaline against liver cirrhosis induced by thioacetamide in mice. The study was carried out on sixty male mice divided into three main groups. Control and harmaline groups (GIa and GIb), thioacetamide-group (GII) and harmaline co-treated and treated groups (GIIIa and GIIIb). By the end of the experiment, adiponectin concentrations were measured in serum and liver tissue. Gene expression of adiponectin, transforming growth factor beta-1 (TGF-β1), tissue inhibitor metalloprotease-1(TIMP-1) and peroxisome proliferator activated receptor-gamma (PPAR-γ) were assessed. Some oxidative stress biomarkers as malondialdehyde, reduced glutathione, catalase, superoxide dismutase and nitric oxide were determined. The results indicated that harmaline administration cause significant suppression of oxidative stress and inflammatory response.Inhibition of hepatic stellate cell activation and extracellular matrix deposition were also noticed with a significant decrease in the expression of the profibrotic markers(TGF-β1 and TIMP-1) which have direct effects on adiponectin activation. These results were confirmed by the histological studies in liver tissue. In Conclusion,Harmaline has excellent protective role against liver cirrhosis induced by thioacetamide in mice via its antioxidant and anti-inflammatory properties.It can be therapeutically used as a safe liver support by a dose of 10 mg/kg after furtherin vivo studies.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261789
Author(s):  
Xiaoying Liu ◽  
Sarah A. Taylor ◽  
Kyle D. Gromer ◽  
Danny Zhang ◽  
Susan C. Hubchak ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of liver diseases in the United States and can progress to cirrhosis, end-stage liver disease and need for liver transplantation. There are limited therapies for NAFLD, in part, due to incomplete understanding of the disease pathogenesis, which involves different cell populations in the liver. Endoplasmic reticulum stress and its adaptative unfolded protein response (UPR) signaling pathway have been implicated in the progression from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH). We have previously shown that mice lacking the UPR protein X-box binding protein 1 (XBP1) in the liver demonstrated enhanced liver injury and fibrosis in a high fat sugar (HFS) dietary model of NAFLD. In this study, to better understand the role of liver XBP1 in the pathobiology of NAFLD, we fed hepatocyte XBP1 deficient mice a HFS diet or chow and investigated UPR and other cell signaling pathways in hepatocytes, hepatic stellate cells and immune cells. We demonstrate that loss of XBP1 in hepatocytes increased inflammatory pathway expression and altered expression of the UPR signaling in hepatocytes and was associated with enhanced hepatic stellate cell activation after HFS feeding. We believe that a better understanding of liver cell-specific signaling in the pathogenesis of NASH may allow us to identify new therapeutic targets.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariko Hara-Chikuma ◽  
Manami Tanaka ◽  
Alan S. Verkman ◽  
Masato Yasui

Abstract Aquaporin 3 (AQP3) is a transporter of water, glycerol and hydrogen peroxide (H2O2) that is expressed in various epithelial cells and in macrophages. Here, we developed an anti-AQP3 monoclonal antibody (mAb) that inhibited AQP3-facilitated H2O2 and glycerol transport, and prevented liver injury in experimental animal models. Using AQP3 knockout mice in a model of liver injury and fibrosis produced by CCl4, we obtained evidence for involvement of AQP3 expression in nuclear factor-κB (NF-κB) cell signaling, hepatic oxidative stress and inflammation in macrophages during liver injury. The activated macrophages caused stellate cell activation, leading to liver injury, by a mechanism involving AQP3-mediated H2O2 transport. Administration of an anti-AQP3 mAb, which targeted an extracellular epitope on AQP3, prevented liver injury by inhibition of AQP3-mediated H2O2 transport and macrophage activation. These findings implicate the involvement of macrophage AQP3 in liver injury, and provide evidence for mAb inhibition of AQP3-mediated H2O2 transport as therapy for macrophage-dependent liver injury.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1333
Author(s):  
Mengyuan Fang ◽  
Tingfeng Zou ◽  
Xiaoxiao Yang ◽  
Zhen Zhang ◽  
Peichang Cao ◽  
...  

Sepsis remains one of the most common life-threatening illnesses that is characterized by a systemic inflammatory response syndrome (SIRS) and usually arises following severe trauma and various septic infections. It is still in urgent need of new effective therapeutic agents, and chances are great that some candidates can be identified that can attenuate oxidative stress and inflammatory responses. Pterostilbene, which exerts attractive anti-oxidative and anti-inflammatory activities, is a homologue of natural polyphenolic derivative of resveratrol. Starting from it, we have made several rounds of rational optimizations. Firstly, based on the strategy of pharmacophore combination, indanone moiety was introduced onto the pterostilbene skeleton to generate a novel series of pterostilbene derivatives (PIF_1–PIF_16) which could possess both anti-oxidative and anti-inflammatory activities for sepsis treatment. Then, all target compounds were subjected to their structure–activity relationships (SAR) screening of anti-inflammatory activity in mouse mononuclear macrophage RAW264.7 cell line, and their cytotoxicities were determined after. Finally, an optimal compound, PIF_9, was identified. It decreased the mRNA levels of lipopolysaccharide (LPS)-induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2). We also found that the anti-inflammatory effects might be contributed by its suppression on the nuclear factor-κB (NF-κB) and MAPKs signaling pathway. Moreover, PIF_9 also demonstrated potent anti-oxidative activity in RAW264.7 macrophages and the sepsis mouse model. Not surprisingly, with the benefits mentioned above, it ameliorated LPS-induced sepsis in C57BL/6J mice and reduced multi-organ toxicity. Taken together, PIF_9 was identified as a potential sepsis solution, targeting inflammation and oxidative stress through modulating MAPKs/NF-κB.


2019 ◽  
Vol 316 (3) ◽  
pp. G387-G396 ◽  
Author(s):  
Zhen-Tang Jing ◽  
Wei Liu ◽  
Chao-Rong Xue ◽  
Shu-Xiang Wu ◽  
Wan-Nan Chen ◽  
...  

Tumor necrosis factor-α (TNF-α) is a highly pleiotropic cytokine executing biological functions as diverse as cell proliferation, metabolic activation, inflammatory responses, and cell death. TNF-α can induce multiple mechanisms to initiate apoptosis in hepatocytes leading to the subsequent liver injury. Since the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway is known to have a protective role in death factor-mediated apoptosis, it is our hypothesis that activation of Akt may represent a therapeutic strategy to alleviate TNF-α-induced hepatocyte apoptosis and liver injury. We report here that the Akt activator SC79 protects hepatocytes from TNF-α-induced apoptosis and protects mice from d-galactosamine (d-Gal)/lipopolysaccharide (LPS)-induced TNF-α-mediated liver injury and damage. SC79 not only enhances the nuclear factor-κB (NF-κB) prosurvival signaling in response to TNF-α stimulation, but also increases the expression of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein L and S (FLIPL/S), which consequently inhibits the activation of procaspase-8. Furthermore, pretreatment of the PI3K/Akt inhibitor LY294002 reverses all the SC79-induced hepatoprotective effects. These results strongly indicate that SC79 protects against TNF-α-induced hepatocyte apoptosis and suggests that SC79 is likely a promising therapeutic agent for ameliorating the development of liver injury. NEW & NOTEWORTHY SC79 protects hepatocytes from TNF-α-mediated apoptosis and mice from Gal/LPS-induced liver injury and damage. Cytoprotective effects of SC79 against TNF-α act through both AKT-mediated activation of NF-κB and upregulation of FLIPL/S.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 386 ◽  
Author(s):  
Yufeng Cao ◽  
Fu Li ◽  
Yanyan Luo ◽  
Liang Zhang ◽  
Shuya Lu ◽  
...  

20-Hydroxy-3-oxolupan-28-oic acid (HOA), a lupane-type triterpene, was obtained from the leaves of Mahonia bealei, which is described in the Chinese Pharmacopeia as a remedy for inflammation and related diseases. The anti-inflammatory mechanisms of HOA, however, have not yet been fully elucidated. Therefore, the objective of this study was to characterize the molecular mechanisms of HOA in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. HOA suppressed the release of nitric oxide (NO), pro-inflammatory cytokine tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 macrophages without affecting cell viability. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis indicated that HOA also suppressed the gene expression of inducible NO synthase (iNOS), TNF-α, and IL-6. Further analyses demonstrated that HOA inhibited the phosphorylation of upstream signaling molecules, including p85, PDK1, Akt, IκBα, ERK, and JNK, as well as the nuclear translocation of nuclear factor κB (NF-κB) p65. Interestingly, HOA had no effect on the LPS-induced nuclear translocation of activator protein 1 (AP-1). Taken together, these results suggest that HOA inhibits the production of cytokine by downregulating iNOS, TNF-α, and IL-6 gene expression via the downregulation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs), and the inhibition of NF-κB activation. Our findings indicate that HOA could potentially be used as an anti-inflammatory agent for medical use.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1037
Author(s):  
Md Badrul Alam ◽  
Yoon-Gyung Kwon ◽  
Shakina Yesmin Simu ◽  
Sk Abrar Shahriyar ◽  
Sang Han Lee

Prolonged inflammatory responses can lead to the development of several chronic diseases, such as autoimmune disorders and the development of natural therapeutic agents is required. A murine model was used to assess the anti-inflammatory effects of the megastigmane glucoside, icariside B2 (ICSB), and the assessment was carried out in vitro, and in vivo. The in vitro anti-inflammatory effects of ICSB were tested using LPS-stimulated BV2 cells, and the protein expression levels of inflammatory genes and cytokines were assessed. Mice were subcutaneously injected with 1% carrageenan (CA) to induce acute phase inflammation in the paw. Inflammation was assessed by measuring paw volumes hourly; subsequently, the mice were euthanized and the right hind paw skin was expunged and processed for reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. ICSB inhibits LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) generation by reducing the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). ICSB also inhibits the COX-2 enzyme with an IC50 value of 7.80 ± 0.26 µM. Molecular docking analysis revealed that ICSB had a strong binding affinity with both murine and human COX-2 proteins with binding energies of −8 kcal/mol and −7.4 kcal/mol, respectively. ICSB also reduces the manifestation of pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, at their transcriptional and translational level. ICSB hinders inhibitory protein κBα (IκBα) phosphorylation, thereby terminating the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) nuclear translocation. ICSB also represses the mitogen-activated protein kinases (MAPKs) signaling pathways. ICSB (50 mg/kg) showed an anti-edema effect in CA-induced mice and suppressed the CA-induced increases in iNOS and COX-2 protein levels. ICSB attenuated inflammatory responses by downregulating NF-κB expression through interference with extracellular signal-regulated kinase (ERK) and p38 phosphorylation, and by modulating the expression levels of iNOS, COX-2, TNF-α, IL-1β, and IL-6.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ping He ◽  
Yafeng Wu ◽  
Jianchao Shun ◽  
Yaodong Liang ◽  
Mingliang Cheng ◽  
...  

Alcoholic liver injury leads to serious complication including death. The potential role of baicalin at the transcription level in mice model of alcohol injury is not known yet. In this study, we examined the effect of baicalin against chronic plus binge ethanol model in mice and understanding the mechanism of protection. Liver function, histology, steatosis, inflammation, NF-κB activity, oxidative stress sources, nuclear translocation of NRF2 transcription factor, and cell death were assessed. Treatment with baicalin ameliorated ethanol-induced oxidative stress, inflammation, and cell death. Baicalin attenuated ethanol-induced proinflammatory molecules such as TNF-α, IL-1β, MIP-2, and MCP-1 and reversed redox-sensitive transcription factor NF-κB activation. Baicalin also modulated Kupffer cell activation in vitro. Baicalin inhibited ethanol-induced expression of reactive oxygen species (ROS) generating enzymes NOX2, p67phox, xanthine oxidase, and iNOS in addition to CYP2E1 activities. Baicalin also enhanced ethanol-induced NRF2 nuclear translocation and increased downstream target gene HO-1 as antioxidant defense. Finally, baicalin reduced significant apoptotic and necrotic cell death. Our study suggests that baicalin ameliorates chronic plus binge ethanol-induced liver injury involving molecular crosstalk of multiple pathways at the transcriptional level and through upregulation of antioxidant defense mechanism.


2020 ◽  
Vol 134 (16) ◽  
pp. 2189-2201
Author(s):  
Jessica P.E. Davis ◽  
Stephen H. Caldwell

Abstract Fibrosis results from a disordered wound healing response within the liver with activated hepatic stellate cells laying down dense, collagen-rich extracellular matrix that eventually restricts liver hepatic synthetic function and causes increased sinusoidal resistance. The end result of progressive fibrosis, cirrhosis, is associated with significant morbidity and mortality as well as tremendous economic burden. Fibrosis can be conceptualized as an aberrant wound healing response analogous to a chronic ankle sprain that is driven by chronic liver injury commonly over decades. Two unique aspects of hepatic fibrosis – the chronic nature of insult required and the liver’s unique ability to regenerate – give an opportunity for pharmacologic intervention to stop or slow the pace of fibrosis in patients early in the course of their liver disease. Two potential biologic mechanisms link together hemostasis and fibrosis: focal parenchymal extinction and direct stellate cell activation by thrombin and Factor Xa. Available translational research further supports the role of thrombosis in fibrosis. In this review, we will summarize what is known about the convergence of hemostatic changes and hepatic fibrosis in chronic liver disease and present current preclinical and clinical data exploring the relationship between the two. We will also present clinical trial data that underscores the potential use of anticoagulant therapy as an antifibrotic factor in liver disease.


Sign in / Sign up

Export Citation Format

Share Document