scholarly journals Utilization of Rosmarinic and Ascorbic Acids for Maturation Culture Media in Order to Increase Sow Oocyte Quality Prior to IVF

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7215
Author(s):  
Oana-Maria Boldura ◽  
Simona Marc ◽  
Gabriel Otava ◽  
Ioan Hutu ◽  
Cornel Balta ◽  
...  

The beneficial effect of antioxidant supplementation in maturation culture media of sow oocytes was evaluated by the expression quantification of apoptotic genes and the genes that ensure stability of germ cells during fertilization. The oocytes were cultivated for 44 h in conventional medium (C) or in medium supplemented with 105 µM rosmarinic acid (R) and 0.5 mM ascorbic acid (A) and classified into three quality classes by morphological observation from which the total RNA was isolated. The gene expression of Ptx3 and the apoptotic regulator p53, Bax and BCL-2 were evaluated by quantitative PCR technique. The decreased expression of the Bax gene in the A and R groups, compared to the control, indicates a protective role of antioxidants in the cells. Cell homeostasis was maintained, as reflected in the ratio of Bax/Bcl-2 in class I COCs (cumulus-oocyte complex) regardless of the experimental group, indicating minimum cellular stress. The expression of p53 genes was higher in all class III COC, but in A1 and R1 the expression was lower than in C1, and a similar Ptx-3 gene decreased significantly in groups A1, A2, A3 and R1 compared with control groups. Antioxidant supplementation showed beneficial effects on all morphological classes of pig COCs.

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


2020 ◽  
Vol 10 (01) ◽  
pp. e104-e109
Author(s):  
Antonio Molina-Carballo ◽  
Antonio Emilio Jerez-Calero ◽  
Antonio Muñoz-Hoyos

AbstractMelatonin, produced in every cell that possesses mitochondria, acts as an endogenous free radical scavenger, and improves energetic metabolism and immune function, by complex molecular crosstalk with other intracellular compounds. There is greatly increasing evidence regarding beneficial effects of acute and chronic administration of high melatonin doses, in infectious, developmental, and degenerative pathologies, as an endothelial cell and every cell protectant.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 682
Author(s):  
Serena Coppola ◽  
Carmen Avagliano ◽  
Antonio Calignano ◽  
Roberto Berni Canani

Worldwide obesity is a public health concern that has reached pandemic levels. Obesity is the major predisposing factor to comorbidities, including type 2 diabetes, cardiovascular diseases, dyslipidemia, and non-alcoholic fatty liver disease. The common forms of obesity are multifactorial and derive from a complex interplay of environmental changes and the individual genetic predisposition. Increasing evidence suggest a pivotal role played by alterations of gut microbiota (GM) that could represent the causative link between environmental factors and onset of obesity. The beneficial effects of GM are mainly mediated by the secretion of various metabolites. Short-chain fatty acids (SCFAs) acetate, propionate and butyrate are small organic metabolites produced by fermentation of dietary fibers and resistant starch with vast beneficial effects in energy metabolism, intestinal homeostasis and immune responses regulation. An aberrant production of SCFAs has emerged in obesity and metabolic diseases. Among SCFAs, butyrate emerged because it might have a potential in alleviating obesity and related comorbidities. Here we reviewed the preclinical and clinical data that contribute to explain the role of butyrate in this context, highlighting its crucial contribute in the diet-GM-host health axis.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ulka Sachdev ◽  
Xiangdong Cui ◽  
Qian Sun ◽  
Edith Tzeng ◽  
Alex Chen ◽  
...  

Introduction: Millions of Americans are at risk for amputation from severe peripheral arterial disease (PAD) when surgery is not possible. Pro-regenerative and angiogenic agents may improve outcome in that setting. Chloroquine (CQ) promotes wound healing in scleroderma but has not been tested in PAD. CQ promotes healing of ischemic muscle, increases muscle high mobility group box 1 (HMGB1), an inflammatory, pro-angiogenic protein, and activates caspase-1 in myoblasts. We hypothesize that HMGB1 mediates protective effects of CQ and is regulated by caspase-1 in muscle. Controlled rather than indiscriminate release of HMGB1 from damaged muscle may be protective during ischemia. Methods: C2C12 myoblasts in low serum were treated with CQ (0-50μM) ± Ac-YVAD-cmk (10 μg/ml), a caspase-1 inhibitor. HMGB1 release in supernatants was measured using ELISA. Cytotoxicity was assessed by comparing spontaneous lactate dehydrogenase (LDH) activity in culture media from control, treated and maximally lysed cells. CQ (50μg/ml) or placebo treated wild-type and inducible HMGB1 knockout (iHMGB1KO) mice underwent unilateral femoral artery ligation (FAL). Laser Doppler perfusion imaging (LDPI) before and 1,7,14 and 21d after FAL was reported as % improvement over time. ANOVA was used to assess statistical significance among groups. Results: CQ (5-10uM) attenuated spontaneous LDH leak after 12h from serum-depleted myoblasts (p <0.01, N=3), and modestly increased HMGB1 release (p <0.001, N=3). Ac-YVAD-cmk reversed the cytoprotective effects of CQ, significantly raising both LDH activity to 55% of maximal activity and HMGB1 in the supernatant. Compared to d1 post FAL, CQ improved perfusion recovery in WT mice by 300-800% over 21 days (p<0.03, N=7/group), but not in iHMGB1KO mice. Conclusion: We present the novel finding that in nutrient-depleted myoblasts, caspase-1 mediates the survival benefits of CQ and regulates HMGB1 release. In turn, HMGB1 is critical for CQ’s beneficial effects on perfusion after FAL, another stress condition. Regulated HMGB1 release may be immunomodulatory, regenerative and modifiable with drugs like CQ. Altering survival and inflammatory pathways through CQ may present a novel therapeutic strategy in PAD.


2007 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
Qiang Wang ◽  
Qing-Yuan Sun

Mounting evidence that oocyte quality profoundly affects fertilisation and subsequent embryo development drives the continued search for reliable predictors of oocyte developmental competence. In the present review, we provide an overall summary and analysis of potential criteria that can be used to evaluate oocyte quality. These criteria are specifically classified as morphological and cellular/molecular predictors. Traditional methods for the evaluation of oocyte quality are based on morphological classification of the follicle, cumulus–oocyte complex, polar body and/or meiotic spindle. Although the use of morphological characteristics as predictors of oocyte quality is controversial, such a grading system can provide valuable information for the preselection of oocytes with higher developmental competence and, therefore, may maximise embryo developmental outcome. Several intrinsic markers (such as mitochondrial status and glucose-6-phosphate dehydrogenase l activity) and extrinsic markers (such as apoptosis of follicular cells and levels of the transforming growth factor-β superfamily in follicular fluid or serum) have also been reported as useful indicators of oocyte competence and embryo quality. Compared with the morphological parameters, these cellular and molecular predictors of oocyte quality may prove to be more precise and objective, although further studies and refinement of techniques are needed.


2019 ◽  
Vol 26 (19) ◽  
pp. 3620-3638 ◽  
Author(s):  
Agostino Di Ciaula ◽  
Gabriella Garruti ◽  
Gema Frühbeck ◽  
Maria De Angelis ◽  
Ornella de Bari ◽  
...  

: Cholesterol gallstone disease is a major health problem in Westernized countries and depends on a complex interplay between genetic factors, lifestyle and diet, acting on specific pathogenic mechanisms. Overweigh, obesity, dyslipidemia, insulin resistance and altered cholesterol homeostasis have been linked to increased gallstone occurrence, and several studies point to a number of specific nutrients as risk- or protective factors with respect to gallstone formation in humans. There is a rising interest in the identification of common and modifiable dietetic factors that put the patients at risk of gallstones or that are able to prevent gallstone formation and growth. In particular, dietary models characterized by increased energy intake with highly refined sugars and sweet foods, high fructose intake, low fiber contents, high fat, consumption of fast food and low vitamin C intake increase the risk of gallstone formation. On the other hand, high intake of monounsaturated fats and fiber, olive oil and fish (ω-3 fatty acids) consumption, vegetable protein intake, fruit, coffee, moderate alcohol consumption and vitamin C supplementation exert a protective role. : The effect of some confounding factors (e.g., physical activity) cannot be ruled out, but general recommendations about the multiple beneficial effects of diet on cholesterol gallstones must be kept in mind, in particular in groups at high risk of gallstone formation.


Surfaces ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 295-305
Author(s):  
Cristina Torrisi ◽  
Marco Di Guardia ◽  
Francesco Castelli ◽  
Maria Grazia Sarpietro

Naringenin (4′,5,7-trihydroxyflavanone-7-rhamnoglucosideor naringenin-7-rhamnoglucoside), a flavonoid present in large quantities in citrus, has different beneficial effects on human health as an antioxidant, free radical scavenger, anti-inflammatory, carbohydrate metabolism promoter, and immune system modulator. Different studies have shown that this substance also has a hypoglycemic and antihypertensive effect, reduces cholesterol and triglycerides, and plays an important protective role in the heart tissue; moreover, it provides neuroprotection against various neurological disorders such as Parkinson’s disease and unpredictable chronic stress-induced depression. Despite these advantages, Naringenin is poorly absorbed, and the small percentage absorbed is rapidly degraded by the liver, as a result losing its activity. Several approaches have been attempted to overcome these obstacles, among them, nanotechnology, with the use of Drug Delivery Systems (DDS) as Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC). DDS can, in fact, improve the drug bioavailability. The aim of this study was to develop and characterize SLN and NLC containing Naringenin and to evaluate the ability of these nanoparticles to release Naringenin at the cell level using biomembrane models represented by Multilamellar Vesicles (MLV). These studies were performed using Differential Scanning Calorimetry, a powerful technique to detect the interaction of drugs and delivery systems with MLV. It was shown that Naringenin could be better incorporated into NLC with respect to SLN and that Naringenin could be released by NLC into the biomembrane model. Therefore, suggesting the administration of Naringenin loaded into nanoparticles could help avoid the disadvantages associated with the use of the free molecule.


Author(s):  
Catherine A. Powell ◽  
Jian Zhang ◽  
John D. Bowman ◽  
Mahua Choudhury

Cardiovascular disease (CVD) is the leading cause of death in both men and women and has largely been attributed to genetic makeup and lifestyle factors. However, genetic regulation does not fully explain the pathophysiology. Recently, epigenetic regulation, the regulation of the genetic code by modifications that affect the transcription and translation of target genes, has been shown to be important. Silent information regulator-2 proteins or sirtuins are an epigenetic regulator family of class III histone deacetylases (HDACs), unique in their dependency on coenzyme NAD+, that are postulated to mediate the beneficial effects of calorie restriction, thus promoting longevity by reducing the incidence of chronic diseases such as cancer, diabetes, and CVD. Emerging evidence shows that SIRT1 is ubiquitously expressed throughout the body. Resveratrol, a plant polyphenol, has cardioprotective effects and its mechanism of action is attributed to regulation of SIRT1. Incoproation of resveratrol into the diet may be a powerful therapeutic option for the prevention and treatment of CVD.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bao-Yu Jia ◽  
De-Cai Xiang ◽  
Qing-Yong Shao ◽  
Bin Zhang ◽  
Shao-Na Liu ◽  
...  

AbstractMammalian oocytes represent impaired quality after undergoing a process of postovulatory aging, which can be alleviated through various effective ways such as reagent treatment. Accumulating evidences have revealed the beneficial effects of astaxanthin (Ax) as a potential antioxidant on reproductive biology. Here, porcine matured oocytes were used as a model to explore whether Ax supplement can protect against oocyte aging in vitro and the underlying mechanism, and therefore they were cultured with or without 2.5 μM Ax for an additional 24 h. Aged oocytes treated with Ax showed improved yield and quality of blastocysts as well as recovered expression of maternal genes. Importantly, oxidative stress in aged oocytes was relieved through Ax treatment, based on reduced reactive oxygen species and enhanced glutathione and antioxidant gene expression. Moreover, inhibition in apoptosis and autophagy of aged oocyte by Ax was confirmed through decreased caspase-3, cathepsin B and autophagic activities. Ax could also maintain spindle organization and actin expression, and rescue functional status of organelles including mitochondria, endoplasmic reticulum, Golgi apparatus and lysosomes according to restored fluorescence intensity. In conclusion, Ax might provide an alternative for ameliorating the oocyte quality following aging in vitro, through the mechanisms mediated by its antioxidant properties.


Sign in / Sign up

Export Citation Format

Share Document