scholarly journals Cinnamon and Eucalyptus Oils Suppress the Inflammation Induced by Lipopolysaccharide In Vivo

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7410
Author(s):  
Chen Zhao ◽  
Yuwei Cao ◽  
Zhuo Zhang ◽  
Dechao Nie ◽  
Yanling Li

Inflammation caused by bacterial lipopolysaccharide (LPS) disrupts epithelial homeostasis and threatens both human and animal health. Therefore, the discovery and development of new anti-inflammatory drugs is urgently required. Plant-derived essential oils (EOs) have good antioxidant and anti-inflammatory activities. Thus, this study aims to screen and evaluate the effects of cinnamon oil and eucalyptus oil on anti-inflammatory activities. The associated evaluation indicators include body weight gain, visceral edema coefficient, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nitrogen monoxide (NO), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), Urea, Crea, ALT, TLR4, MyD88, NF-κB, IκB-α, iNOS, and Mn-SOD. In addition, tissue injury was determined by H&E staining. The results revealed that cinnamon oil and eucalyptus oil suppressed inflammation by decreasing SOD, TNF-α, and NF-κB levels. We also found that cinnamon oil increased the level of GSH-Px, MDA, and Mn-SOD, as well as the visceral edema coefficient of the kidney and liver. Altogether, these findings illustrated that cinnamon oil and eucalyptus oil exhibited wide antioxidant and anti-inflammatory activities against LPS-induced inflammation.

2007 ◽  
Vol 35 (02) ◽  
pp. 317-328 ◽  
Author(s):  
Jun Liu ◽  
Zheng-Tao Wang ◽  
Li-Li Ji

Neoandrographolide, one of the principal diterpene lactones, isolated from a medicinal herb Andrographis paniculata Nees, was tested in vivo and in vitro for its anti-inflammatory activities and mechanism. Oral administration of neoandrographolide (150 mg/kg) significantly suppressed ear edema induced by dimethyl benzene in mice. Oral administration of neoandrographolide (100–150 mg/kg) also reduced the increase in vascular permeability induced by acetic acid in mice. In vitro studies were performed using the macrophage cell line RAW264.7 to study the effect of neoandrographolide on suppressing phorbol-12-myristate-13-acetate (PMA)-stimulated respiratory bursts and lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). Respiratory bursts were quantified by chemiluminescence (CL) measurements.Results showed that neoandrographolide suppressed PMA-stimulated respiratory bursts dose-dependently from 30 μM to 150 μM. Neoandrographolide also inhibited NO and TNF-α production in LPS-induced macrophages, contributing to the anti-inflammatory activity of A. paniculata. These results indicate that neoandrographolide possesses significant anti-inflammatory effects, which implies that it would be one of the major contributing components to participate in the anti-inflammatory effect of A. paniculata. and a potential candidate for further clinical trial.


2002 ◽  
Vol 70 (10) ◽  
pp. 5721-5729 ◽  
Author(s):  
Rose M. Viscardi ◽  
Jennifer Kaplan ◽  
Judith C. Lovchik ◽  
Ju Ren He ◽  
Lisa Hester ◽  
...  

ABSTRACT Ureaplasma urealyticum respiratory tract colonization in preterm infants has been associated with a high incidence of pneumonia and the development of bronchopulmonary dysplasia. However, study of this human pathogen has been hampered by the absence of animal models. We have developed the first juvenile mouse model of Ureaplasma pneumonia and characterized the histopathology during the month following inoculation. C3H/HeN mice were inoculated intratracheally with a mouse-adapted clinical Ureaplasma isolate (biovar 2) or sham inoculated with 10B broth. Culture of lung homogenates and PCR of DNA from bronchoalveolar lavage fluid (BAL) confirmed the presence of Ureaplasma in 100% of inoculated animals at 1 day, 60% at 2 days, 50% at 3 days, and 25% at 7 and 14 days. Ureaplasma was undetectable 28 days postinoculation. There were marked changes in BAL and interstitial-cell composition with increased number of polymorphonuclear leukocytes 1 to 2 days and 14 days postinoculation and macrophages at 2 and 14 days postinoculation. The Ureaplasma infection caused a persistent focal loss of airway ciliated epithelium and a mild increase in interstitial cellularity. There were no differences in BAL protein concentration during the first 28 days, suggesting that pulmonary vascular endothelial barrier integrity remained intact. Comparison of BAL cytokine and chemokine concentrations revealed low levels of tumor necrosis factor alpha (TNF-α) at 3 days and monocyte chemoattractant protein 1 at 7 days in Ureaplasma-infected mice but a trend toward increased TNF-α at 14 days and increased granulocyte-macrophage colony-stimulating factor and interleukin-10 at 28 days. These data suggest that Ureaplasma alone may cause limited inflammation and minimal tissue injury in the early phase of infection but may promote a mild chronic inflammatory response in the later phase of infection (days 14 to 28), similar to the process that occurs in human newborns.


2021 ◽  
Vol 11 (2) ◽  
pp. 308-316
Author(s):  
Nazariy Nebelyuk

Bronchial asthma (BA) is a fairly common disease of the bronchopulmonary system. Its share is from 0.6 to 2% of all respiratory pathology, in different countries this pathology affects from 1 to 10% of the population, in general, the world has at least 2% of the total population.Cardiovascular diseases continue to be a serious problem in medicine. The reason for this is a large number of stresses of various origins, which cause disruption of the body's adaptive capacity, the development of functional and structural changes in it, which ultimately lead to necrotic myocardial damage.The problem of pathogenesis, early diagnosis and treatment of BA today is not fully understood, it is still one of the serious issues of modern medicine. Despite lengthy research, the serious costs of research, the participation of the world's leading experts, methods of prevention and treatment of cardiovascular diseases, and rehabilitation of patients remain imperfect, although some progress and serious results have already been achieved.The aim of our study was to find out how cytokine levels will change at different stages of the formation of experimental asthma (EA) and adrenaline myocardial damage (AMD), what will be the indicators in the combination of these pathologies and what will be the effect of Corvitin on disorders combination of EA and AMD.The study was conducted on 127 guinea pigs. Blood sampling was performed on the 1st, 4th, 18th and 25th days of EA development, on the same days in AMD, as well as in combination with EA with AMD, and on the 25th day of development of these diseases with treatment. Corvitin, the level of pro-inflammatory cytokines - tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) and anti-inflammatory - interleukin-10 (IL-10) was determined by solid-phase enzyme-linked immunosorbent assay.Studies of cytokine levels in different groups of animals (intact, with EA, with AMD, with EA and AMD and in animals after treatment) showed that in animals with diseases, the rate of pro-inflammatory IL-6 and TNF-α increased with decreasing IL-10. At a combination of pathologies changes were the greatest that testifies to a course of diseases more difficult for an organism.The use of Corvitin showed a positive effect on the violation of cytokine levels and their imbalance, which was due to its antioxidant, anti-inflammatory and immunomodulatory effects. Therefore, quercetin may be effective in the treatment of asthma or a combination of pathologies.


2021 ◽  
Author(s):  
Muzhou Teng ◽  
Zhijia Li ◽  
Zhihui Lu ◽  
Keke Wu ◽  
Jinshan Guo

Abstract Background: Efficient resolution of oxidative stress, inflammation and bacterial infections are crucial for wound healing. To surmount these problems, tannic acid (TA)-bridged CeO2 microcubes and chitosan (CS) (CS-TA@CeO2) cryogel was fabricated through hydrogen bonding interactions as a multifunctional wound dressing. Results: The physicochemical characterizations confirmed the successful introduction and uniform incorporation of TA@CeO2 microcubes into CS network. Thus-obtained CS-TA@CeO2 cryogels displayed suitable porous structure and swelling ratio. The CS-TA@CeO2 cryogels exhibited favorable antioxidant ability evidenced by scavenging more than 82.9% ROS in vitro and significantly increasing the antioxidant enzyme levels in vivo. The anti-inflammatory ability of the cryogels was confirmed by the downregulated expression of the inflammatory cytokine, tumor necrosis factor-alpha (TNF-α) and the upregulated expression of the anti-inflammatory cytokine, interleukin-10 (IL-10). The multifunctional cryogels also showed excellent antibacterial activities against Gram-positive (S.aureus) and Gram-negative (E.coli) bacteria. Furthermore, the cryogels can promote the adhesion and proliferation of mouse fibroblasts (L929) cells. Moreover, CS-TA@CeO2 cryogels presented excellent hemostatic performance in rat tail amputation model. In vivo Sprague-Dawley (SD) rats full-thickness experiments illustrated that the cryogels can significantly accelerate wound healing through providing considerable antioxidant activity, promoting angiogenesis, and increasing collagen deposition. Conclusions: Overall, the multifunctional CS-TA@CeO2 cryogels showed great potential for wound healing.


2013 ◽  
Vol 82 (1) ◽  
pp. 413-422 ◽  
Author(s):  
Ayman Sabra ◽  
Jean-Jacques Bessoule ◽  
Vessela Atanasova-Penichon ◽  
Thierry Noël ◽  
Karine Dementhon

ABSTRACTCandida lusitaniaeis an emerging opportunistic yeast and an attractive model to discover new virulence factors inCandidaspecies by reverse genetics. Our goal was to create adpp3Δ knockout mutant and to characterize the effects of this gene inactivation on yeastin vitroandin vivointeraction with the host. The secretion of two signaling molecules inCandidaspecies, phenethyl alcohol (PEA) and tyrosol, but not of farnesol was surprisingly altered in thedpp3Δ knockout mutant. NO and reactive oxygen species (ROS) production as well as tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) secretion were also modified in macrophages infected with this mutant. Interestingly, we found that the wild-type (WT) strain induced an increase in IL-10 secretion by zymosan-activated macrophages without the need for physical contact, whereas thedpp3Δ knockout mutant lost this ability. We further showed a striking role of PEA and tyrosol in this modulation. Last, theDPP3gene was found to be an essential contributor to virulence in mice models, leading to an increase in TNF-α secretion and brain colonization. Although reinsertion of a WTDPP3copy in thedpp3Δ knockout mutant was not sufficient to restore the WT phenotypesin vitro, it allowed a restoration of those observedin vivo. These data support the hypothesis that some of the phenotypes observed followingDPP3gene inactivation may be directly dependent onDPP3, while others may be the indirect consequence of another genetic modification that systematically arises when theDPP3gene is inactivated.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiang Hu ◽  
Chaofeng Han ◽  
Jing Jin ◽  
Kewei Qin ◽  
Hua Zhang ◽  
...  

Abstract Interleukin-10 (IL-10) plays a central role in regulation of intestinal mucosal homeostasis and prevention of inflammatory bowel disease (IBD). We previously reported that CD11bhi regulatory dendritic cells (DCs) can produce more IL-10 and CD11b can negatively regulate Toll-like receptors (TLRs)-induced inflammatory responses in macrophages. However whether CD11b and its signaling can control autoimmunity via IL-10 production remains unclear. Here we found that CD11b deficient (Itgam−/−) mice were more susceptible to dextran sulfate sodium (DSS)-induced colitis, with more tumor necrosis factor α (TNF-α) while less IL-10 production. CD11b inhibited nuclear factor-kappa B (NF-κB) while promoted activator protein 1 (AP-1) activation through activating sarcoma oncogene (Src), leading to decreased TNF-α while increased IL-10 production. Src interacted with and promoted c-casitas B lineage lymphoma proto-oncogene (c-Cbl)-mediated degradation of the inhibitory subunit p85 of phosphatidylinositol 3-kinase (PI3K). Importantly, Src inhibitor dasatinib aggravated DSS-induced colitis by decreasing IL-10 while increasing TNF-α in vivo. Therefore, CD11b promotes IL-10 production by activating Src-Akt signal pathway. An axis of CD11b-Src pathway is important in balancing homeostasis of TLR-induced pro-inflammatory and anti-inflammatory responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Acharya Balkrishna ◽  
Meenu Tomer ◽  
Moumita Manik ◽  
Jyotish Srivastava ◽  
Rishabh Dev ◽  
...  

The time-tested Ayurvedic medicinal food, Chyawanprash, has been a part of the Indian diet since ancient times. It is an extremely concentrated mixture of extracts from medicinal herbs and processed minerals, known for its immunity boosting, rejuvenating, and anti-oxidative effects. In this study, we have evaluated the anti-inflammatory potential of Patanjali Special Chyawanprash (PSCP) using the zebrafish model of inflammation. Zebrafish were fed on PSCP-infused pellets at stipulated doses for 13 days before inducing inflammation through lipopolysaccharide (LPS) injection. The test subjects were monitored for inflammatory pathologies like behavioral fever, hyperventilation, skin hemorrhage, locomotory agility, and morphological anomaly. PSCP exerted a strong prophylactic effect on the zebrafish that efficiently protected them from inflammatory manifestations at a human equivalent dose. Expression levels of pro-inflammatory cytokines, like interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β), were also reduced in the LPS-stimulated zebrafish fed on PSCP-infused pellets. Skin hemorrhage, hyperventilation, and loss of caudal fins are characteristics of LPS-induced inflammation in zebrafish. PSCP prophylactically ameliorated skin hemorrhage, restored normal respiration, and prevented loss of caudal fin in inflamed zebrafish. Under in vitro conditions, PSCP reduced IL-6 and TNF-α secretion by THP-1 macrophages in a dose-dependent manner by targeting NF-κB signaling, as evident from the secreted embryonic alkaline phosphatase (SEAP) reporter assay. These medicinal benefits of PSCP can be attributed to its constitutional bioactive components. Taken together, these observations provide in vivo validation of the anti-inflammatory property and in vitro insight into the mode-of-action of Chyawanprash, a traditionally described medicinal food.


2021 ◽  
Vol 22 (14) ◽  
pp. 7482
Author(s):  
Hwan Lee ◽  
Zhiming Liu ◽  
Chi-Su Yoon ◽  
Linsha Dong ◽  
Wonmin Ko ◽  
...  

Aging is associated with immune disregulation and oxidative stress which lead to inflammation and neurodegenerative diseases. We have tried to identify the anti-neuroinflammatory and anti-inflammatory components of Coreopsis lanceolata L. The dried flowers of C. lanceolata were extracted with 70% EtOH, and the obtained extract was divided into CH2Cl2, EtOAc, n-BuOH, and H2O fractions. The CH2Cl2 fraction was separated using silica gel and C-18 column chromatography to yield phenylheptatriyne (1), 2′-hydroxy-3,4,4′-trimethoxychalcone (2), and 4′,7-dimethoxyflavanone (3). Additionally, the EtOAc fraction was subjected to silica gel, C-18, and Sephadex LH-20 column chromatography to yield 8-methoxybutin (4) and leptosidin (5). All the compounds isolated from C. lanceolata inhibited the production of nitric oxide (NO) in LPS-induced BV2 and RAW264.7 cells. In addition, phenylheptatriyne and 4′,7-dimethoxyflavanone reduced the secretion of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. Among them, phenylheptatriyne was significantly downregulated in the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequently, phenylheptatriyne also effectively inhibited nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 and RAW264.7 cells. Based on these results, the anti-neuroinflammatory effect of phenylheptatriyne isolated from C. lanceolata was confirmed, which may exert a therapeutic effect in treatment of neuroinflammation-related diseases.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


Author(s):  
Yong Fu ◽  
Gailing Ma ◽  
Yuqian Zhang ◽  
Wenli Wang ◽  
Tongguo Shi ◽  
...  

Abstract Background Interleukin-10 (IL-10) is a potent immunoregulatory cytokine that plays a pivotal role in maintaining mucosal immune homeostasis. As a novel synthetic inhibitor of salt-inducible kinases (SIKs), HG-9-91-01 can effectively enhance IL-10 secretion at the cellular level, but its in vivo immunoregulatory effects remain unclear. In this study, we investigated the effects and underlying mechanism of HG-9-91-01 in murine colitis models. Methods The anti-inflammatory effects of HG-9-91-01 were evaluated on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-, dextran sulfate sodium–induced colitis mice, and IL-10 knockout chronic colitis mice. The in vivo effector cell of HG-9-91-01 was identified by fluorescence-activated cell sorting and quantitative real-time polymerase chain reaction. The underlying mechanism of HG-9-91-01 was investigated via overexpressing SIKs in ANA-1 macrophages and TNBS colitis mice. Results Treatment with HG-9-91-01 showed favorable anticolitis effects in both TNBS- and DSS-treated mice through significantly promoting IL-10 expression in colonic macrophages but failed to protect against IL-10 KO murine colitis. Further study indicated that HG-9-91-01 markedly enhanced the nuclear level of cAMP response element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3), whereas treatment with lentiviruses encoding SIK protein markedly decreased the nuclear CRTC3 level in HG-9-91-01–treated ANA-1 macrophages. In addition, intracolonic administration with lentiviruses encoding SIK protein significantly decreased the nuclear CRTC3 level in the lamina propria mononuclear cells and ended the anti-inflammatory activities of HG-9-91-01. Conclusions We found that HG-9-91-01 promoted the IL-10 expression of colonic macrophages and exhibited its anticolitis activity through the SIK/CRTC3 axis, and thus it may represent a promising strategy for inflammatory bowel disease therapy.


Sign in / Sign up

Export Citation Format

Share Document