scholarly journals Isoflavone Changes in Immature and Mature Soybeans by Thermal Processing

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7471
Author(s):  
Shanshan Qu ◽  
Soon Jae Kwon ◽  
Shucheng Duan ◽  
You Jin Lim ◽  
Seok Hyun Eom

The isoflavone changes occurring in mature soybeans during food processing have been well studied, but less information is available on the changes in immature soybeans during thermal processing. This study aimed to determine the effect of thermal processing by dry- or wet-heating on the changes in the isoflavone profiles of immature and mature soybeans. In the malonylglycoside forms of isoflavone, their deglycosylation was more severe after wet-heating than after dry-heating regardless of the soybean maturity. The malonyl forms of isoflavones in the immature seeds were drastically degraded after a short wet-heating process. In the acetylglycoside forms of isoflavone, dry-heating produced relatively low amounts of the acetyl types in the immature soybeans compared with those in the mature soybeans. These results were explained by the content of acetyldaidzin being relatively less changed after dry-heating immature soybeans but increasing four to five times in the mature soybeans. More of the other types of acetylglycoside were produced by dry-heating soybeans regardless of their maturity. Acetylgenistin in wet-heating was a key molecule because its content was unchanged in the immature soybeans during processing but increased in the mature soybeans. This determined the total acetylglycoside content after wet-heating. In contrast, most of the acetyl forms of isoflavone were produced after 90 to 120 min of dry-heating regardless of the seed maturity. It can be suggested that the pattern of isoflavone conversion was significantly affected by the innate water content of the seeds, with a lower water content in the mature soybeans leading to the greater production of acetyl isoflavones regardless of the processing method even if only applied for a relatively short time. The results suggested that the isoflavone conversion in the immature soybeans mainly follows the wet-heating process and can be promoted in the application of stronger processing.

A brief history of the thermal processing of foods is provided, and followed by an outline of the biomathematical theory upon which modern food processing techniques are based. The paper then proceeds to show how this well-established theory has been supplemented by applying the mathematical approach previously reserved for consideration of bacterial destruction to the destruction rate of essential nutrients. Recent developments in the field of high-temperature short-time (h. t. s. t.) processing are discussed with emphasis on problems connected with aseptic methods. As an alternative to aseptic filling, the use of ultra high filling temperatures is considered. Thin section containers, such as foil pouches, or the adoption of vacuum sterilization or flame sterilization techniques, afford the possibility of applying h. t. s. t. processes to filled and sealed containers. Problems encountered in using microwave energy for sterilization are outlined. In conclusion two recent experimental developments are described - fluid bed heating and cooling of containers and the helical pump sterilizer.


2013 ◽  
Vol 3 (1) ◽  
pp. 45-50
Author(s):  
Dwi Dian Praptanto ◽  
Kurnia Herlina Dewi ◽  
Bosman Sidebang

The purpose of this study is to examine the effect of drying time in weight and water content, combination effect of drying time and size of the material, and consumer acceptance to the product in the wet processing of chili blocks production. Method used in the research is completely randomized design (CRD) with two factorials are material size and drying time. Data were analyzed using ANOVA and further analysis using DMRT at 5% significance level. Organoleptic test result was analyzed using the Kruskal-Wallis and Tukey test for further analysis. Application of the equal drying time to two different size of material: rough and finest block chili, showed the result that water content of the rough block chili is lower than the finest block chilli. Application of the different drying time duration to the same size of chili showed the lower water content with increasing duration of drying time. The water content of the material tends to decrease with increasing duration of drying time. The level of consumer’s preferences to the product of wet processing of chili blocks production is equal for scents, but it’s different for color, texture and overall preferences.


Alloy Digest ◽  
1982 ◽  
Vol 31 (7) ◽  

Abstract JESSOP JS17Cr-4Ni is a martensitic, precipitation-hardening chromium-nickel-copper stainless steel. It provides an excellent combination of high strength and hardness, short-time low-temperature precipitation hardening and good mechanical properties at temperatures up to 600 F (316 C). Its corrosion resistance is quite good but inferior to lower strength grades produced for corrosion-resistance applications. JS17Cr-4Ni is used widely for critical applications in the aerospace, chemical, food processing and other industries. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-412. Producer or source: Jessop Steel Company.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1490
Author(s):  
Wei Wang ◽  
Lu Dong ◽  
Yan Zhang ◽  
Huaning Yu ◽  
Shuo Wang

In order to reduce the formation of heterocyclic amines in grilled beef patties without destroying their unique quality characteristics, the effects of different thermal processes, including charcoal grilling, infrared grilling, superheated steam roasting and microwave heating, on the production of heterocyclic amines in beef patties and grilling quality characteristics were systematically analyzed. The results showed that infrared grilling can significantly (p < 0.05) reduce the content of heterocyclic amines in grilled patties, and the combination of microwave heating or superheated steam roasting with infrared grilling could further reduce the content of heterocyclic amines, with a maximum reduction ratio of 44.48%. While subtle differences may exist in infrared grilled patties with/without superheated steam roasting or microwave heating, a slight change will not affect the overall quality characteristics of grilled patties. The combined thermal processing will not visually affect the color of the grilled patties. Correlation analysis and regression analysis showed that the reduction in heterocyclic amines caused by microwave heating and superheated steam roasting are related to the moisture content and lipid oxidation of grilled patties, respectively. Using combined thermal processes to reduce the formation of heterocyclic amines is advisable.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 418
Author(s):  
Shelley M. Horne ◽  
Angel Ugrinov ◽  
Birgit M. Prüβ

β-Phenylethylamine hydrochloride (PEA-HCl) and ethyl acetoacetate (EAA) are anti-microbials with applications in food processing. As food anti-microbials, the compounds will have to withstand the cooking process without changing to toxic compounds. With this Communication, we address the question of whether PEA and EAA are altered when heated to 73.9 °C or 93.3 °C. A combination of gas chromatography and mass spectrometry was used to analyze solutions of PEA(-HCl) or EAA in beef broth or water. In addition, the anti-microbial activity of PEA-HCl and EAA was compared between heated and unheated samples at a range of concentrations. The gas chromatograms of PEA(-HCl) and EAA showed one peak at early retention times that did not differ between the heated and unheated samples. The mass spectra for PEA and EAA were near identical to those from a spectral database and did not show any differences between the heated and unheated samples. We conclude that PEA(-HCl) and EAA formed pure solutions and were not altered during the heating process. In addition, the anti-microbial activity of PEA-HCl and EAA did not change after the heating of the compounds. Regardless of temperature, the minimal inhibitory concentrations (MICs) for PEA-HCl were 20.75 mmol mL−1 for Escherichia coli and Salmonella enterica serotype Typhimurium. For EAA, the MICs were 23.4 mmol mL−1 for E. coli and 15.6 mmol mL−1 for S. enterica.


2021 ◽  
Author(s):  
Meng Liu ◽  
Tian-Jiao Han ◽  
Fei Huan ◽  
Meng-Si Li ◽  
Fei Xia ◽  
...  

Food processing can change the structure and immunoreactivity of purified allergens, but the effect of food processing on the immunoreactivity of the processed and purified allergen is still poorly understood.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 617
Author(s):  
Silvia Guillén ◽  
Laura Nadal ◽  
Ignacio Álvarez ◽  
Pilar Mañas ◽  
Guillermo Cebrián

The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.


2020 ◽  
Vol 39 (1) ◽  
pp. 54-62
Author(s):  
Hua Chen ◽  
Junjiang Chen ◽  
Weijun Wang ◽  
Huan Lin

AbstractThe multimode resonant cavity is the most common cavity. The material often shows on selective heating performance during the heating process due to the effect of microwave heating having a closely relationship with the electromagnetism parameters. This paper is based on finite difference time domain method (FDTD) to establish the electromagnetic-thermal model. The electromagnetic sensitivity property parameters of sodium chloride including relative dielectric constant, loss angle tangent and water content of sodium chloride is studied during the heating and drying process. The heating rate and the electric field distribution of sodium chloride, at the different water content, were simulated with the electromagnetic characteristic parameters changing. The results show that with the electromagnetic sensitivity property parameters varying, the electric field strength, heating rate and steady-state temperature of the heating material will all have a variety in the cavity. Some measures are proposed to improve the heating efficiency and ensure the stability of the microwave heating system in the industrial application.


2018 ◽  
Vol 37 (2) ◽  
pp. 341-354 ◽  
Author(s):  
Changgang Lin ◽  
Mingsong Zou ◽  
Huifeng Jiao ◽  
Peng Liu

This paper mainly focuses on the remarkable transient vibration and underwater acoustic radiation when the underwater vehicle changes direction or depth, and a short time Fourier transform signal processing method to evaluate transient vibration and acoustic radiation of steering engine is provided in this paper. Based on the vibration test of the 1:1 experimental scaffold of the steering engine for an underwater vehicle, the transient maximum excitation forces acting at the contact points between steering engine and experimental scaffold are calculated indirectly by the least square method of load identification in frequency domain and the short time Fourier transform signal processing method. The accuracy and feasibility of results are verified. In addition, taking excitation forces as an approximate input, the numerical solution of transient acoustic radiation for a cylindrical shell with ribs of the steering engine room, based on elastic shell theory and fluid–structure interaction theory, is presented. In the simulation, the steering engine room of the underwater vehicle is simplified into a cylindrical shell with two simply supported tips, because a cylindrical shell with ribs is the basic structure-borne used in underwater vehicles. The results show that transient acoustic radiation of the tested steering engine is higher than allowable value, while the evaluation results of another electric steering engine without retarder are suitable.


Author(s):  
Ken Shimojima ◽  
Yoshikazu Higa ◽  
Osamu Higa ◽  
Ayumi Takemoto ◽  
Shigeru Itoh ◽  
...  

Recently, National Institute of Technology, Okinawa College (ONCT) has been developing a new food processing method using underwater shock wave. The continuous-operation device was manufactured for the production of rice flour, the amount of milling flour per hour and the quality of the rice powder were evaluated. In the case of Yuzu (Citrus junos), an improved fragrance was obtained using this methods compared with other general processing method. The authors have also developed a batch-type crushing device (pressure vessel) for various food processing. However, the mechanism by which is processed using shock waves has not been clarified. Therefore, in this study, the propagation characteristics of a shock wave in the developed pressure vessel were evaluated by numerical simulation. The characteristics of processing is evaluated using shock wave and, the pressure resistance of the vessel was analyzed. In addition, food processing experiments using the developed device were performed. In which, in which “Yuzu” were crushed. Yuzu before-and-after crushing were compared, and the effect of shock wave were clarified.


Sign in / Sign up

Export Citation Format

Share Document