scholarly journals 3D X-ray Micro-CT Analysis of Rebar Corrosion in Reinforced Concrete Subjected to a Chloride-Induced Environment

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 192
Author(s):  
Łukasz Skarżyński ◽  
Katarzyna Kibort ◽  
Aleksandra Małachowska

The paper presents experimental investigations of the concrete covers’ protective ability to counteract rebar corrosion in reinforced concrete cubes. The concrete sample was subjected to a chloride-induced environment to get corroded and combined with an un-corroded sample. The chloride-accelerated technique can induce a high degree of corrosion within a controlled time. Moreover, detailed and thorough experimental measurements and analyses of reinforcement loss due to corrosion and its influence on concrete microstructure, were studied through 3D X-ray micro-computed tomography. The rebar outside the concrete was heavily corroded due to the chloride-accelerated test, whereas, only local surface corrosion products appeared inside the concrete. It turned out that the concrete cover showed protective ability to counteract the reinforcing-steel corrosion mechanism despite the accelerated corrosion environment. Moreover, the bond strength between the reinforcement rebar and concrete was not visibly affected since the failure force in the pull-out test and failure mechanisms, observed by 3D X-ray micro-CT, were similar for corroded and un-corroded samples. The failure occurred due to radial cracks with a maximum width equal to approximately 0.25 mm.

2019 ◽  
Vol 207 ◽  
pp. 304-315 ◽  
Author(s):  
Guohao Fang ◽  
Weijian Ding ◽  
Yuqing Liu ◽  
Jianchao Zhang ◽  
Feng Xing ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yuhui Chen ◽  
He Cao ◽  
Dawei Sun ◽  
Changxin Lin ◽  
Liang Wang ◽  
...  

Bone fracture is a global healthcare issue for high rates of delayed healing and nonunions. Although n-3 polyunsaturated fatty acid (PUFA) is considered as a beneficial factor for bone metabolism, only few studies till date focused on the effects of n-3 PUFAs on fracture healing. In this study, we investigated the effect of endogenous n-3 PUFAs on fracture healing by measuring femur fracture repair in bothfat-1transgenic mice and WT mice. Proximal femoral fracture model was established infat-1transgenic mice and WT mice, respectively, and then the fracture was analyzed by using X-ray, micro-computed tomography (micro-CT), and histological assessment at 7, 14, 21, 28, and 35 days after fixation. The results showed that compared with WT mice,fat-1mice exhibited acceleration in fracture healing through radiographic and histological analysis (18–21 days versus 21–28 days postfracture). Meanwhile, X-ray and micro-CT analysis that showed better remodeling callus formation were in thefat-1group compared to WT group. Furthermore, histological analysis revealed that endogenous n-3 PUFAs promoted local endochondral ossification and accelerated the remodeling of calcified calluses after fracture. In conclusion, the present study indicated that endogenously produced n-3 PUFAs promote fracture healing process and accelerate bone remodeling in mice, and supplementation of n-3 PUFAs was positively associated with fracture healing.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiangfeng Liu ◽  
Huijun Kang ◽  
Jiangfeng Lu ◽  
Yike Dai ◽  
Fei Wang

Abstract Background Poor osseointegration is the key reason for implant failure after arthroplasty,whether under osteoporotic or normal bone conditions. To date, osseointegration remains a major challenge. Recent studies have shown that deferoxamine (DFO) can accelerate osteogenesis by activating the hypoxia signaling pathway. The purpose of this study was to test the following hypothesis: after knee replacement, intra-articular injection of DFO will promote osteogenesis and osseointegration with a 3D printed titanium prosthesis in the bones of osteoporotic rats. Materials and methods Ninety female Sprague–Dawley rats were used for the experiment. Ten rats were used to confirm the successful establishment of the osteoporosis model: five rats in the sham operation group and five rats in the ovariectomy group. After ovariectomy and knee arthroplasty were performed, the remaining 80 rats were randomly divided into DFO and control groups (n = 40 per group). The two groups were treated by intraarticular injection of DFO and saline respectively. After 2 weeks, polymerase chain reaction (PCR) and immunohistochemistry were used to evaluate the levels of HIF-1a, VEGF, and CD31. HIF-1a and VEGF have been shown to promote angiogenesis and bone regeneration, and CD31 is an important marker of angiogenesis. After 12 weeks, the specimens were examined by micro-computed tomography (micro-CT), biomechanics, and histopathology to evaluate osteogenesis and osseointegration. Results The results of PCR showed that the mRNA levels of VEGF and CD31 in the DFO group were significantly higher than those in the control group. The immunohistochemistry results indicated that positive cell expression of HIF-1a, VEGF, and CD31 in the DFO group was also higher. Compared with the control group, the micro-CT parameters of BMD, BV/TV, TB. N, and TB. Th were significantly higher. The maximal pull-out force and the bone-to-implant contact value were also higher. Conclusions The local administration of DFO, which is used to activate the HIF-1a signaling pathway, can promote osteogenesis and osseointegration with a prosthesis in osteoporotic bone.


2020 ◽  
Author(s):  
Carlo Porfido ◽  
Roberto Rizzo ◽  
David Healy ◽  
Matteo Spagnuolo ◽  
Roberto Terzano ◽  
...  

<div><div><div><p>This work presents a study on the fracturing behaviour of a quartz tempered clay-based ceramic subjected to damage in freeze-thaw cycles. X-ray micro-computed tomography (micro-CT) provided high-resolution imaging of the ceramic before and during the freeze-thaw treatment, allowing to analyse a fully water-saturated sample using a special thermal stage designed to keep the sample frozen during analyses. Micro-CT 3D renderings showed the internal features of the specimen (i.e., quartz grain distribution), the increment of fracture count and size, and the detachment of ceramic and/or temper fragments from the edges of the sample over the cycles. Selected 2D micrographs, before and after freeze-thawing treatment, were analysed using the MATLAB toolbox FracPaQ. This software provided detailed data on fracture length, intensity, density, orientation and connectivity, and enabled to interpret the process of fracture initiation and propagation inside the material. These results showed that the temper plays a crucial role in ceramic fracturing behaviour under freeze- thawing conditions, as damage propagation is influenced by quartz grain distribution and orientation within the material. The study described in this work, not only offers new insights into the fracture dynamics of freeze-thawed clay-based ceramics, but also presents a new methodological approach to quantitatively measure fracture damage in porous materials.</p></div></div></div>


2020 ◽  
Vol 47 (3) ◽  
pp. 337-343
Author(s):  
Dongyun Lee ◽  
Jisun Shin

Molar-incisor malformation (MIM) is a new type of root anomaly reported recently. The characteristics of MIM are dysplastic root formations, constriction of pulp chambers and presence of calcified matrices at the level of cementoenamel junction in permanent first molars and primary second molars. In some cases, permanent maxillary incisors are also affected.The permanent first molars of the patient in this case report were affected with MIM. Generalized pulp stones were observed in overall primary dentition. Micro-computed tomography (micro-CT) imaging and scanning electron microscope-energy dispersive X-ray spectrometer analysis were performed on the extracted mandibular first molar and maxillary primary second molar of the patient. Micro-CT images revealed the discontinuity of enamel directly connected to an accessory canal of the root.


2021 ◽  
Vol 1135 (1) ◽  
pp. 012023
Author(s):  
Rickard Olsson ◽  
John Powell ◽  
Jan Frostevarg ◽  
Alexander F.H. Kaplan

Abstract Surfaces generated by Additive Manufacturing or laser texturing can involve the solidification of droplets of liquid, which can give rise to overhanging features on the solidified surface. Overhanging features add a layer of complexity to the surface topography and are undetectable by standard surface roughness measurement techniques such as profilometry. Such features are important because they can have a considerable effect on surface properties such as wettability. New techniques and algorithms are therefore required to analyse and quantify convoluted surfaces with overhanging (re-entrant) features. Earlier work by the authors introduced the concept of using X-ray micro-computed tomography (Micro-CT) to identify the directions of vectors normal to the surface at any point and thus indicate the presence or absence of overhanging features. This paper divides overhanging features into two types; simple and compound, and introduces new, size independent, analysis techniques which measure what proportion of each type is on the surface. Another extension of the analysis is the comparison of surface profiles taken in different directions in order to identify any surface roughness anisotropies.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3606
Author(s):  
Armin Rashidi ◽  
Tina Olfatbakhsh ◽  
Bryn Crawford ◽  
Abbas S. Milani

X-ray computed tomography provides qualitative and quantitative structural and compositional information for a broad range of materials. Yet, its contribution to the field of advanced composites such as carbon fiber reinforced polymers is still limited by factors such as low imaging contrast, due to scarce X-ray attenuation features. This article, through a review of the state of the art, followed by an example case study on Micro-computed tomography (CT) analysis of low X-ray absorptive dry and prepreg carbon woven fabric composites, aims to highlight and address some challenges as well as best practices on performing scans that can capture key features of the material. In the case study, utilizing an Xradia Micro-CT-400, important aspects such as obtaining sufficient contrast, an examination of thin samples, sample size/resolution issues, and image-based modeling are discussed. The outcome of an optimized workflow in Micro-CT of composite fabrics can assist in further research efforts such as the generation of surface or volume meshes for the numerical modeling of underlying deformation mechanisms during their manufacturing processes.


2020 ◽  
Vol 94 (3) ◽  
pp. 417-435 ◽  
Author(s):  
Sarah Kachovich ◽  
Jonathan C. Aitchison

AbstractA new, previously undescribed Middle Ordovician (middle Darriwilian: Dw2) radiolarian assemblage has been recovered from the Table Cove Formation at Piccadilly Quarry, western Newfoundland. Constituents of the fauna described herein are both distinctive and exceptionally well preserved. Three-dimensional X-ray micro-computed tomography (μ-CT) is used to make a detailed examination of four key spumellarian specimens. This technology enables visualization of hitherto ambiguous details of the internal morphologies of key lower Paleozoic taxonomic groups, among which a lack of knowledge has impeded resolution of higher taxonomic rankings.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
L. Tapie ◽  
N. Chiche ◽  
P. Boitelle ◽  
P. Morenton ◽  
J.-P. Attal ◽  
...  

Computer-Aided Design and Manufacturing systems are increasingly used to produce dental prostheses, but the parts produced suffer from a lack of evaluation, especially concerning the internal gap of the final assembly, that is, the space between the prepared tooth and the prosthesis. X-ray micro-Computed Tomography (micro-CT) is a noninvasive imaging technique enabling the internal inspection of the assembly. It has proved to be an efficient tool for measuring the gap. In this study, a critical review of the protocols using micro-CT to quantify the gap is proposed as an introduction to a new protocol aimed at minimizing errors and enabling comparison between CAD/CAM systems. To compare different systems, a standardized protocol is proposed including two reference geometries. Micro-CT is used to acquire the reference geometries. A new 3D method is then proposed and a new indicator is defined (Gap Size Distribution (GSD)). In addition, the usual 2D measurements are described and discussed. The 3D gap measurement method proposed can be used in clinical case geometries and has the considerable advantage of minimizing the data processing steps before performing the measurements.


2015 ◽  
Vol 651-653 ◽  
pp. 325-330 ◽  
Author(s):  
Marcin Barburski ◽  
Ilya Straumit ◽  
Stepan V. Lomov

X-ray micro computed tomography (Micro-CT) is a non-destructive technique that can provide information on the internal structure of materials. The purpose of micro-CT is to assess the presence of defects as well as characterizing internal structures and potential damage present in the produced part. Simple shear is an interesting deformation mechanism for woven fabric draping. The internal structure change of the carbon fibre twill fabric after shear deformation is chosen as a subject of this paper. Parameters of the mesoscopic internal structure of the woven fabric like cross section, shape, area, and middle line coordinates can be obtained from micro-CT images through image processing procedures. Details of the image data processing for sheared fabric cross sections are discussed. This paper illustrates the possibilities of micro-focus computer tomography in materials research, namely for defining geometrical properties of textile. Image processing is also used for the recognition of fibre direction in the yarns. Described methodology can be applied for determining structure of a fabric, and the results can be used for further micromechanical modelling. Identification of the fibres orientation is important for estimation of the mechanical properties of composites and can be achieved with image processing techniques.


Sign in / Sign up

Export Citation Format

Share Document