scholarly journals Intracellular Antioxidant Activity of Biocompatible Citrate-Capped Palladium Nanozymes

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 99 ◽  
Author(s):  
Mauro Moglianetti ◽  
Deborah Pedone ◽  
Gayatri Udayan ◽  
Saverio Francesco Retta ◽  
Doriana Debellis ◽  
...  

A method for the aqueous synthesis of stable and biocompatible citrate-coated palladium nanoparticles (PdNPs) in the size range comparable to natural enzymes (4–8 nm) has been developed. The toxicological profile of PdNPs was assessed by different assays on several cell lines demonstrating their safety in vitro also at high particle concentrations. To elucidate their cellular fate upon uptake, the localization of PdNPs was analyzed by Transmission Electron Microscopy (TEM). Moreover, crucial information about their intracellular stability and oxidation state was obtained by Sputtering-Enabled Intracellular X-ray Photoelectron Spectroscopy (SEI-XPS). TEM/XPS results showed significant stability of PdNPs in the cellular environment, an important feature for their biocompatibility and potential for biomedical applications. On the catalytic side, these PdNPs exhibited strong and broad antioxidant activities, being able to mimic the three main antioxidant cellular enzymes, i.e., peroxidase, catalase, and superoxide dismutase. Remarkably, using an experimental model of a human oxidative stress-related disease, we demonstrated the effectiveness of PdNPs as antioxidant nanozymes within the cellular environment, showing that they are able to completely re-establish the physiological Reactive Oxygen Species (ROS) levels in highly compromised intracellular redox conditions.

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
S. L. Iconaru ◽  
F. Ungureanu ◽  
A. Costescu ◽  
M. Costache ◽  
A. Dinischiotu ◽  
...  

Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11) were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5torr). Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), and differential thermal analysis and thermal gravimetric analysis (TG/DTA). The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC) Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.


2018 ◽  
Vol 55 (3) ◽  
pp. 263-268
Author(s):  
Ionut Cristian Radu ◽  
Eugeniu Vasile ◽  
Celina Maria Damian ◽  
Horia Iovu ◽  
Paul Octavian Stanescu ◽  
...  

The paper focuses on the obtaining of novel nanocomposite hydrogels based on polyacrylamide and layered double hydroxides (LDHs) modified with double bonds. The modification of LDH clay was investigated by FTIR, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses. Mechanical properties of the nanocomposite hydrogels were employed by compression and rheological measurements. The formation of exfoliated and intercalated structures was evidenced in transmission electron microscopy (TEM). Chemical cross-linking of hydrogels using both classical cross-linker and modified clay was an efficient method to improve the mechanical properties of novel nanocomposite hydrogels. These hydrogels with improved mechanical properties could be further tested for biomedical applications such as tissue engineering.


2020 ◽  
Vol 10 (4) ◽  
pp. 1363 ◽  
Author(s):  
Wen-Chien Lan ◽  
Chia-Hsien Wang ◽  
Bai-Hung Huang ◽  
Yen-Chun Cho ◽  
Takashi Saito ◽  
...  

The effects of the nano-titanium hydrides (nano-γ-TiH) phase on the formation of nanoporous Ti oxide layer by the potential approach (hydrogen fluoride (HF) pretreatment and sodium hydroxide (NaOH) anodization) were investigated using scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy. The nano-γ-TiH phase was formed by the HF pretreatment with various current densities. After the NaOH anodization, the nano-γ-TiH phase was dissolved and transformed into nanoporous rutile-Ti dioxide (R-TiO2). As the Ti underwent HF pretreatment and NaOH anodization, the microstructure on the surface layer was transformed from α-Ti → (α-Ti + nano-γ-TiH) → (α-Ti + R-TiO2). In-vitro biocompatibility also indicated that the Ti with a hierarchical porous (micro and nanoporous) TiO2 surface possessed great potential to enhance cell adhesion ability. Thus, the potential approach can be utilized to fabricate a promising hierarchical porous surface on the Ti implant for promoting biocompatibility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hajar Q. Alijani ◽  
Siavash Iravani ◽  
Shahram Pourseyedi ◽  
Masoud Torkzadeh-Mahani ◽  
Mahmood Barani ◽  
...  

AbstractGreener methods for the synthesis of various nanostructures with well-organized characteristics and biomedical applicability have demonstrated several advantages, including simplicity, low toxicity, cost-effectiveness, and eco-friendliness. Spinel nickel ferrite (NiFe2O4) nanowhiskers with rod-like structures were synthesized using a simple and green method; these nanostructures were evaluated by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, and X-ray energy diffraction spectroscopy. Additionally, the prepared nanowhiskers could significantly reduce the survival of Leishmania major promastigotes, at a concentration of 500 μg/mL; the survival of promastigotes was reduced to ≃ 26%. According to the results obtained from MTT test (in vitro), it can be proposed that further studies should be conducted to evaluate anti-leishmaniasis activity of these types of nanowhiskers in animal models.


Author(s):  
Zebin Yang ◽  
Jitao Liu ◽  
Jinkun Liu ◽  
Xiliang Chen ◽  
Tingting Yan ◽  
...  

AbstractGraphene oxide/nano-hydroxyapatite (GO/nHAP) composites were synthesized by simultaneous titration method. The GO powder was uniformly dispersed ultrasonically in a solution containing Ca(NO3)2. It was co-titrated with (NH4)2HPO4, during which NH3·H2O was used to maintain pH of about 10. Transmission electron microscopy (TEM) showed that HAP had a drusy acicular crystal structure with 100–200 nm length in the composite. The Ca2+ ions were attracted by the negatively charged oxygen functional groups present on GO sheets. They also oriented the growth of hydroxyapatite preferentially along (112) plane, which was also consistent with X-ray diffractometry (XRD) results. According to X-ray photoelectron spectroscopic (XPS) results, the peak intensities of the C–O and C–C groups increased in the GO/nHAP composite. However, the number of –COO– and C–O–C groups was reduced as well as the position of peaks shifted due to electrostatic interactions. These results were also corroborated with Fourier transform infrared spectroscopy (FTIR). MTT assay indicated that GO/nHAP composites had a significant effect on proliferation of 293T cells and good biomimetic mineralization as shown by in vitro bioactivity assays. EDS spectroscopy confirmed that the Ca/P ratio in calcium phosphate deposits was 1.62, which was close to the ratio of 1.64 in natural bone. The biological performance of GO/nHAP composite proved it to be a promising candidate for bone regeneration and implantation.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1109
Author(s):  
Eleonora Casula ◽  
Maria Letizia Manca ◽  
Matteo Perra ◽  
Jose Luis Pedraz ◽  
Tania Belen Lopez-Mendez ◽  
...  

A total green nanotechnological nasal spray has been manufactured and proposed as an alternative treatment of rhinitis and rhinosinusitis. It was obtained by combining the strengthening effect of liposomes on barrier function, the hydrating and lubricating properties of sodium hyaluronan and the anti-inflammatory and antioxidant activities of the extract of Zingiber officinalis. To this purpose, the extract was loaded in special phospholipid vesicles immobilized with hyaluronic acid (hyalurosomes), which were further enriched with glycerol in the water phase. Liposomes and glycerosomes were prepared as well and used as reference. Vesicles were oligolamellar and multicompartment, as confirmed by cryogenic transmission electron microscopy (cryo-TEM) observation, small in size (~140 nm) and negatively charged (~−23 mV). Spray characteristics were evaluated by using the Spraytec® and instant images, from which the plume angle was measured. The range of the droplet size distribution and the narrow spray angle obtained suggest a good nebulization and a possible local deposition in the nasal cavity. In vitro studies performed by using human keratinocytes confirmed the high biocompatibility of vesicles and their ability to effectively counteract oxidative damage on cells induced by hydrogen peroxide. The overall collected data suggest that our vesicles are suitable as nasal spray.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2446
Author(s):  
Adriana Nicoleta Frone ◽  
Cristian Andi Nicolae ◽  
Mihaela Carmen Eremia ◽  
Vlad Tofan ◽  
Marius Ghiurea ◽  
...  

The inherent brittleness of poly(3-hydroxybutyrate) (PHB) prevents its use as a substitute of petroleum-based polymers. Low molecular weight plasticizers, such as tributyl 2-acetyl citrate (TAC), cannot properly solve this issue. Herein, PHB films were obtained using a biosynthesized poly(3-hydroxyoctanoate) (PHO) and a commercially available TAC as toughening agents. The use of TAC strongly decreased the PHB thermal stability up to 200 °C due to the loss of low boiling point plasticizer, while minor weight loss was noticed at this temperature for the PHB-PHO blend. Both agents shifted the glass transition temperature of PHB to a lower temperature, the effect being more pronounced for TAC. The elongation at break of PHB increased by 700% after PHO addition and by only 185% in the case of TAC; this demonstrates an important toughening effect of the polymeric modifier. Migration of TAC to the upper surface of the films and no sign of migration in the case of PHO were highlighted by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) results. In vitro biocompatibility tests showed that all the PHB films are non-toxic towards L929 cells and have no proinflammatory immune response. The use of PHO as a toughening agent in PHB represents an attractive solution to its brittleness in the case of packaging and biomedical applications while conserving its biodegradability and biocompatibility.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1844
Author(s):  
Delia Dumbrava ◽  
Liviana Alexandra Popescu ◽  
Codruța Marinela Soica ◽  
Alma Nicolin ◽  
Ileana Cocan ◽  
...  

Increased sugar consumption and unhealthy dietary patterns are key drivers of many preventable diseases that result in disability and death worldwide. However, health awareness has increased over the past decades creating a massive on-going demand for new low/non-caloric natural sweeteners that have a high potential and are safer for consumption than artificial ones. The current study aims to investigate the nutritional properties, in vitro toxicological profile, total/individual polyphenols content, and the antioxidant, anti-cariogenic, and antimicrobial activity of two newly obtained vegan and sugar-free chocolate (VHC1 and VHC2). The energy values for the two finished products were very similar, 408.04 kcal/100 g for VHC1 and 404.68 kcal/100 g for VHC2. Both products, VHC1 and VHC2 present strong antioxidant activities, whereas antimicrobial results show an increased activity for VHC1 compared to VHC2, because of a higher phenolic content. In vitro toxicological evaluation revealed that both samples present a safe toxicological profile, while VHC2 increased cellular turnover of dermal cell lines, highlighting its potential use in skin treatments. The current work underlines the potential use of these vegetal mixtures as sugar-free substitutes for conventional products, as nutraceuticals, as well as topic application in skin care due to antimicrobial and antioxidant effects.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 858
Author(s):  
Atanu Naskar ◽  
Sohee Lee ◽  
Dongjoon Ko ◽  
Semi Kim ◽  
Kwang-sun Kim

The interactions between proteins and nanoparticles need to be fully characterized as the immobilization of proteins onto various nanoplatforms in the physiological system often results in the change of surface of the protein molecules to avoid any detrimental issues related to their biomedical applications. Hence, in this article, the successful low-temperature synthesis of a BP-based γ-Fe2O3 (IB) nanocomposite and its interactive behavior with bovine serum albumin (BSA)—a molecule with chemical similarity and high sequence identity to human serum albumin—are described. To confirm the formation of γ-Fe2O3 and the IB nanocomposite, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy analyses of the materials were performed. Additionally, the physical interaction between BSA and the IB nanocomposite was confirmed via UV–Vis and photoluminescence spectral analyses. Finally, the biocompatibility of the BSA-immobilized IB nanocomposite was verified using an in vitro cytotoxicity assay with HCT-15 colon cancer cells. Our findings demonstrate that this newly developed nanocomposite has potential utility as a biocompatible nanoplatform for various biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document