scholarly journals Exposure to TiO2 Nanostructured Aerosol Induces Specific Gene Expression Profile Modifications in the Lungs of Young and Elderly Rats

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1466
Author(s):  
Sarah A. Valentino ◽  
Laëtitia Chézeau ◽  
Carole Seidel ◽  
Sylvie Sébillaud ◽  
Mylène Lorcin ◽  
...  

Although aging is associated with a higher risk of developing respiratory pathologies, very few studies have assessed the impact of age on the adverse effects of inhaled nanoparticles. Using conventional and transcriptomic approaches, this study aimed to compare in young (12–13-week-old) and elderly (19-month-old) fisher F344 rats the pulmonary toxicity of an inhaled nanostructured aerosol of titanium dioxide (TiO2). Animals were nose-only exposed to this aerosol at a concentration of 10 mg/m3 for 6 h per day, 5 days per week for 4 weeks. Tissues were collected immediately (D0), and 28 days after exposure (D28). A pulmonary influx of neutrophilic granulocytes was observed in exposed rats at D0, but diminished with time while remaining significant until D28. Similarly, an increased expression of several genes involved in inflammation at the two post-exposure time-points was seen. Apart from an age-specific pulmonary influx of lymphocyte, only slight differences in physio-pathological responses following TiO2 exposure between young and elderly animals were noticed. Conversely, marked age-related differences in gene expression profiles were observed making possible to establish lists of genes specific to each age group and post-exposure times. These results highlight different signaling pathways that were disrupted in rats according to their age.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine R. Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


2021 ◽  
Author(s):  
Giulia Zancolli ◽  
Maarten Reijnders ◽  
Robert Waterhouse ◽  
Marc Robinson-Rechavi

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a cocktail of potent bioactive molecules to subdue prey or predators: venom. This makes it one of the most widespread convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed the first comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages, to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turns, activates regulatory networks for epithelial development, cell turnover and maintenance which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents the first step towards an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ben Holmes ◽  
Seung Ho Jung ◽  
Jing Lu ◽  
Jessica A. Wagner ◽  
Liudmilla Rubbi ◽  
...  

Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Zhi Chai ◽  
Yafei Lyu ◽  
Qiuyan Chen ◽  
Cheng-Hsin Wei ◽  
Lindsay Snyder ◽  
...  

Abstract Objectives To characterize and compare the impact of vitamin A (VA) deficiency on gene expression patterns in the small intestine (SI) and the colon, and to discover novel target genes in VA-related biological pathways. Methods vitamin A deficient (VAD) mice were generated by feeding VAD diet to pregnant C57/BL6 dams and their post-weaning offspring. Total mRNA extracted from SI and colon were sequenced using Illumina HiSeq 2500 platform. Differentially Expressed Gene (DEG), Gene Ontology (GO) enrichment, and Weighted Gene Co-expression Network Analysis (WGCNA) were performed to characterize expression patterns and co-expression patterns. Results The comparison between vitamin A sufficient (VAS) and VAD groups detected 49 and 94 DEGs in SI and colon, respectively. According to GO information, DEGs in the SI demonstrated significant enrichment in categories relevant to retinoid metabolic process, molecule binding, and immune function. Immunity related pathways, such as “humoral immune response” and “complement activation,” were positively associated with VA in SI. On the contrary, in colon, “cell division” was the only enriched category and was negatively associated with VA. WGCNA identified modules significantly correlated with VA status in SI and in colon. One of those modules contained five known retinoic acid targets. Therefore we have prioritized the other module members (e.g., Mbl2, Mmp9, Mmp13, Cxcl14 and Pkd1l2) to be investigated as candidate genes regulated by VA. Comparison of co-expression modules between SI and colon indicated distinct VA effects on these two organs. Conclusions The results show that VA deficiency alters the gene expression profiles in SI and colon quite differently. Some immune-related genes (Mbl2, Mmp9, Mmp13, Cxcl14 and Pkd1l2) may be novel targets under the control of VA in SI. Funding Sources NIH training grant and NIH research grant. Supporting Tables, Images and/or Graphs


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Piotr Bielecki ◽  
Uthayakumar Muthukumarasamy ◽  
Denitsa Eckweiler ◽  
Agata Bielecka ◽  
Sarah Pohl ◽  
...  

ABSTRACTmRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression ofEscherichia colipathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associatedE. coliisolates to different phylogenetic groups. Whereas thein vivogene expression profiles of the majority of genes were conserved among 21E. colistrains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribedin vivorelative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease.IMPORTANCEUrinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenicEscherichia colistrains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenicE. coligene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.


Heart Rhythm ◽  
2013 ◽  
Vol 10 (3) ◽  
pp. 383-391 ◽  
Author(s):  
Yung-Hsin Yeh ◽  
Chi-Tai Kuo ◽  
Yun-Shien Lee ◽  
Yuan-Min Lin ◽  
Stanley Nattel ◽  
...  

2015 ◽  
Vol 41 (6) ◽  
pp. 640-645 ◽  
Author(s):  
Ghadeer Thalji ◽  
Lyndon F. Cooper ◽  
Salvador Nares

The objective of this study was to evaluate the impact of smoking on the early molecular events involved in peri-implant healing at either a micro-roughened or a micro-roughened with superimposed nanofeatures surface implant in humans. Twenty-one subjects, 10 smokers and 11 nonsmokers received 4 mini-implants (2.2 × 5.0 mm; 2 of each surface). After 3 and 7 days, paired mini-implants were retrieved by reverse threading and RNA isolated from implant adherent cells. Whole genome microarrays were used interrogate the gene expression profiles. The study failed to identify differences in the gene expression profiles of implant adherent cells at this early stage of osseointegration (up to day 7) comparing smoker and nonsmoker individuals.


Sign in / Sign up

Export Citation Format

Share Document