scholarly journals In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3078
Author(s):  
Shahab Moghari ◽  
Seyed Hassan Jafari ◽  
Mohsen Khodadadi Yazdi ◽  
Maryam Jouyandeh ◽  
Aleksander Hejna ◽  
...  

In-out surface modification of halloysite nanotubes (HNTs) has been successfully performed by taking advantage of 8-hydroxyquinolines in the lumen of HNTs and precisely synthesized aniline oligomers (AO) of different lengths (tri- and pentamer) anchored on the external surface of the HNTs. Several analyses, including FTIR, H-NMR, TGA, UV-visible spectroscopy, and SEM, were used to establish the nature of the HNTs’ surface engineering. Nanoparticles were incorporated into epoxy resin at 0.1 wt.% loading for investigation of the contribution of surface chemistry to epoxy cure behavior and kinetics. Nonisothermal differential scanning calorimetry (DSC) data were fed into home-written MATLAB codes, and isoconversional approaches were used to determine the apparent activation energy (Eα) as a function of the extent of cure reaction (α). Compared to pristine HNTs, AO-HNTs facilitated the densification of an epoxy network. Pentamer AO-HNTs with longer arms promoted an Excellent cure; with an Eα value that was 14% lower in the presence of this additive than for neat epoxy, demonstrating an enhanced cross-linking. The model also predicted a triplet of cure (m, n, and ln A) for autocatalytic reaction order, non-catalytic reaction order, and pre-exponential factor, respectively, by the Arrhenius equation. The enhanced autocatalytic reaction in AO-HNTs/epoxy was reflected in a significant rise in the value of m, from 0.11 to 0.28. Kinetic models reliably predict the cure footprint suggested by DSC measurements.

2018 ◽  
Vol 5 (8) ◽  
pp. 180566 ◽  
Author(s):  
Jie Xu ◽  
Jiayao Yang ◽  
Xiaohuan Liu ◽  
Hengxu Wang ◽  
Jingjie Zhang ◽  
...  

At present, the disadvantage of powder epoxy adhesive is the limited application area. In order to widen the application range of powder epoxy adhesive from heat-resistant substrates (such as metals) to heat-sensitive substrates (such as plastic products, cardboard and wood), it is necessary to decrease the curing temperature. In this article, a series of fast-curing powder epoxy adhesives were prepared by the melt blending method with bisphenol A epoxy resin (E-20), hexamethylenetetramine (HMTA) as a curing agent and 2-methylimidazole (2-MI) as an accelerant. The structure and properties of the E-20/HMTA/2-MI systems were characterized by Fourier transform infrared, thermogravimetric analysis, dynamic mechanical analyser and differential scanning calorimetry (DSC). 2-MI added into the E-20/HMTA systems can simultaneously enhance toughness, tensile strength, glass transition temperature ( T g ) and thermal stability in comparison with the E-20/HMTA systems. The best mechanical properties were obtained at 100/8/0.6 weight ratio of the E-20/HMTA/2-MI systems. DSC experiments revealed that the exothermic peak of the E-20/HMTA/2-MI system was about 55°C lower than that of the E-20/HMTA system. The activation energy of the cure reaction was determined by both Kissinger's and Ozawa's methods at any heating rates. The activation energy and pre-exponential factor were about 100.3 kJ mol −1 and 3.57 × 10 11 s −1 , respectively. According to the KAS method, the curing time of the E-20/HMTA/2-MI systems was predicted by evaluating the relationship between temperature and curing time.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1634
Author(s):  
Hassan Omar ◽  
Glen J. Smales ◽  
Sven Henning ◽  
Zhi Li ◽  
De-Yi Wang ◽  
...  

Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) was decreased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1820 ◽  
Author(s):  
Maryam Jouyandeh ◽  
Mohammad Reza Ganjali ◽  
Mustafa Aghazadeh ◽  
Sajjad Habibzadeh ◽  
Krzysztof Formela ◽  
...  

Surface modification of nanoparticles with functional molecules has become a routine method to compensate for diffusion-controlled crosslinking of thermoset polymer composites at late stages of crosslinking, while bulk modification has not carefully been discussed. In this work, a highly-crosslinked model polymer nanocomposite based on epoxy and surface-bulk functionalized magnetic nanoparticles (MNPs) was developed. MNPs were synthesized electrochemically, and then polyethylene glycol (PEG) surface-functionalized (PEG-MNPs) and PEG-functionalized cobalt-doped (Co-PEG-MNPs) particles were developed and used in nanocomposite preparation. Various analyses including field-emission scanning electron microscopy, Fourier-transform infrared spectrophotometry (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM) were employed in characterization of surface and bulk of PEG-MNPs and Co-PEG-MNPs. Epoxy nanocomposites including the aforementioned MNPs were prepared and analyzed by nonisothermal differential scanning calorimetry (DSC) to study their curing potential in epoxy/amine system. Analyses based on Cure Index revealed that incorporation of 0.1 wt.% of Co-PEG-MNPs into epoxy led to Excellent cure at all heating rates, which uncovered the assistance of bulk modification of nanoparticles to the crosslinking of model epoxy nanocomposites. Isoconversional methods revealed higher activation energy for the completely crosslinked epoxy/Co-PEG-MNPs nanocomposite compared to the neat epoxy. The kinetic model based on isoconversional methods was verified by the experimental rate of cure reaction.


2013 ◽  
Vol 634-638 ◽  
pp. 1896-1900 ◽  
Author(s):  
Li Jiao Sun ◽  
Ya Huang ◽  
Xiao Ting Chen

The effects of the functionalized multi-walled carbon nanotubes (MWCNT-P) on the curing behavior of a diglycidyl ether of bisphenol-A epoxy (DGEBA) in the presence of 4,4'-methylenedianiline were investigated by non-isothermal differential scanning calorimetry. Activation energy (Ea) was obtained through Kissinger and Ozawa methodsItalic text respectively, and reaction order(n) was educed by Crane equation. The results showed that the addition of MWCNT-P enhanced the cure reaction of DGEBA with 4,4'-methylenedianiline, compared with pure epoxy system, epoxy containing MWCNT-P exhibited a lower activation energy. Both systems presented the same reaction orders, which indicated MWCNT-P did not change the auto-catalytic cure reaction mechanism of the epoxy resin.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3950
Author(s):  
Abeer Alassod ◽  
Syed Rashedul Islam ◽  
Mina Shahriari Khalaji ◽  
Rogers Tusiime ◽  
Wanzhen Huang ◽  
...  

Compositing is an interesting strategy that has always been employed to introduce or enhance desired functionalities in material systems. In this paper, sponges containing polypropylene, lignin, and octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) were successfully prepared via an easy and elegant strategy called thermally induced phase separation (TIPS). To fully explore the behaviour of different components of prepared sponges, properties were characterized by a thermogravimetric analyser (TGA), differential scanning calorimetry (DSC), Fourier transform infrared measurement (FTIR), and scanning electron microscopy (SEM). Furthermore, wettability properties toward an organic liquid and oil were investigated. The FTIR analysis confirmed the chemical modification of the components. TGA and DSC measurements revealed thermal stability was much better with an increase in OV-POSS content. OV-POSS modified sponges exhibited ultra-hydrophobicity and high oleophilicity with water contact angles of more than 125°. The SEM revealed that POSS molecules acted as a support for reduced surface roughness. Moreover, OV-POSS-based blend sponges showed higher sorption capacities compared with other blend sponges without OV-POSS. The new blend sponges demonstrated a potential for use as sorbent engineering materials in water remediation.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2134
Author(s):  
Sandra Paszkiewicz ◽  
Izabela Irska ◽  
Iman Taraghi ◽  
Elżbieta Piesowicz ◽  
Jakub Sieminski ◽  
...  

The effect of the presence of halloysite nanotubes (HNTs) and silane-treated alumina trihydrate (ATH-sil) nanofillers on the mechanical, thermal, and flame retardancy properties of ethylene-vinyl acetate (EVA) copolymer/low-density polyethylene (LDPE) blends was investigated. Different weight percentages of HNT and ATH-sil nanoparticles, as well as the hybrid system of those nanofillers, were melt mixed with the polymer blend (reference sample) using a twin-screw extruder. The morphology of the nanoparticles and polymer compositions was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The mechanical properties, hardness, water absorption, and melt flow index (MFI) of the compositions were assessed. The tensile strength increases as a function of the amount of HNT nanofiller; however, the elongation at break decreases. In the case of the hybrid system of nanofillers, the compositions showed superior mechanical properties. The thermal properties of the reference sample and those of the corresponding sample with nanofiller blends were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Two peaks were observed in the melting and crystallization temperatures. This shows that the EVA/LDPE is an immiscible polymer blend. The thermal stability of the blends was improved by the presence of HNTs and ATH-sil nanoparticles. Thermal degradation temperatures were shifted to higher values by the presence of hybrid nanofillers. Finally, the flammability of the compositions was assessed. Flammability as reflected by the limiting oxygen index (OI) was increased by the presence of HNT and ATH-sil nanofiller and a hybrid system of the nanoparticles.


2011 ◽  
Vol 76 (5) ◽  
pp. 553-566
Author(s):  
Christian Näther ◽  
Inke Jeß

Clobetasone butyrate was investigated for polymorphism and pseudopolymorphism. Solvent mediated conversion experiments reveal that the commercially available form I represent the thermodynamically most stable form at room temperature and DSC measurements shows that it should also be the most stable form until melting. Form I crystallizes in space groupP212121with three crystallographically independent molecules of similar conformation. From methanol an additional pseudo polymorphic form was discovered. In the crystal structure (space groupP212121) the solvent molecules are connected to the clobetasone butyrate molecules by O–H···O hydrogen bonding. Investigations of the solvate using thermogravimetry, differential thermoanalysis as well as differential scanning calorimetry proves, that on solvent removal an amorphous form is obtained that crystallizes into form I on further heating.


2021 ◽  
Vol 882 ◽  
pp. 21-27
Author(s):  
Seyed Veghar Seyedmohammadi ◽  
Amin Radi ◽  
Guney Guven Yapici

In the present work, the effects of artificial aging treatment on the transformation temperatures and hardness of Cu-Al-Mn shape memory alloy have been investigated. The aging processes have been performed on the one-time re-melted and 90% rolled samples. Differential scanning calorimetry reveals that reverse transformation is present for the re-melted sample which is aged at 400°C. However, in 90% rolled condition, this transformation takes place at 200°C and 300°C. Hardness examination shows that the aged specimens possess higher values in hardness in comparison to un-aged samples at all studied temperatures. Although, the peak-aged condition was demonstrated at 300°C for the re-melted sample, the rolled sample displayed increased hardness levels up to 500°C. Based on the DSC measurements and microstructural observations, it can be asserted that the thermo-mechanical processing including rolling plus aging at 300°C provides favorable transformation characteristics for shape memory behavior.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Kuliaei ◽  
Iraj Amiri Amraei ◽  
Seyed Rasoul Mousavi

Abstract The purpose behind this research was to determine the optimum formulation and investigate the cure kinetics of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin cured by dicyandiamide and diuron for use in prepregs. First, all formulations were examined by the tensile test, and then, the specimens with higher mechanical properties were further investigated by viscometry and tack tests. The cure kinetics of the best formulation (based on tack test) in nonisothermal mode was investigated using differential scanning calorimetry at different heating rates. Kissinger and Ozawa method was used for determining the kinetic parameters of the curing process. The activation energy obtained by this method was 71.43 kJ/mol. The heating rate had no significant effect on the reaction order and the total reaction order was approximately constant ( m + n ≅ 2.1 $m+n\cong 2.1$ ). By comparing the experimental data and the theoretical data obtained by Kissinger and Ozawa method, a good agreement was seen between them. By increasing the degree of conversion, the viscosity decreased; as the degree of conversion increased, so did the slope of viscosity. The results of the tack test also indicated that the highest tack could be obtained with 25% progress of curing.


Sign in / Sign up

Export Citation Format

Share Document