scholarly journals Simultaneous Extraction of the Grain Size, Single-Crystalline Grain Sheet Resistance, and Grain Boundary Resistivity of Polycrystalline Monolayer Graphene

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 206
Author(s):  
Honghwi Park ◽  
Junyeong Lee ◽  
Chang-Ju Lee ◽  
Jaewoon Kang ◽  
Jiyeong Yun ◽  
...  

The electrical properties of polycrystalline graphene grown by chemical vapor deposition (CVD) are determined by grain-related parameters—average grain size, single-crystalline grain sheet resistance, and grain boundary (GB) resistivity. However, extracting these parameters still remains challenging because of the difficulty in observing graphene GBs and decoupling the grain sheet resistance and GB resistivity. In this work, we developed an electrical characterization method that can extract the average grain size, single-crystalline grain sheet resistance, and GB resistivity simultaneously. We observed that the material property, graphene sheet resistance, could depend on the device dimension and developed an analytical resistance model based on the cumulative distribution function of the gamma distribution, explaining the effect of the GB density and distribution in the graphene channel. We applied this model to CVD-grown monolayer graphene by characterizing transmission-line model patterns and simultaneously extracted the average grain size (~5.95 μm), single-crystalline grain sheet resistance (~321 Ω/sq), and GB resistivity (~18.16 kΩ-μm) of the CVD-graphene layer. The extracted values agreed well with those obtained from scanning electron microscopy images of ultraviolet/ozone-treated GBs and the electrical characterization of graphene devices with sub-micrometer channel lengths.

1989 ◽  
Vol 149 ◽  
Author(s):  
J. Kanicki ◽  
E. Hasan ◽  
D. F. Kotecki ◽  
T. Takamori ◽  
J. H. Griffith

ABSTRACTDevice quality undoped hydrogenated microcrystalline silicon has been prepared by plasma enhanced chemical vapor deposition under different conditions. The dependence of physical, chemical, structural, and electrical properties on the deposition conditions has been investigated. Conductive (conductivity above 10−3Ω−1 cm−1) and resistive (conductivity around 10−9Ω−1cm−1) layers having approximately the same grain size, at a given substrate temperature, have been deposited between 200 and 500°C at two different hydrogen dilutions. Independently of the hydrogen dilution, the average grain sized is dependent on the deposition temperature and the film thickness; and a maximum average grain size of about 40 nm has been achieved for a thick film deposited at 500°C. The density of paramagnetic defects also increases with increasing deposition temperature, which indicates that more dangling bond defects are introduced as the total area of the grain boundaries increases. The etch rate decreases with increasing deposition temperature, and for the films deposited at 250 and 500°C the etch rate has been measured to be 6.6 and 2.7 nm/min, respectively. Thin film transistors incorporating a microcrystalline channel have been fabricated and evaluated. The best device had the following properties: field effect mobility, threshold voltage, and on/off current ratio of about 0.8 cm2/V sec, below 5 V, and around 106, respectively.


2019 ◽  
Vol 51 (1) ◽  
pp. 513-530 ◽  
Author(s):  
Zhenbo Zhang ◽  
Éva Ódor ◽  
Diana Farkas ◽  
Bertalan Jóni ◽  
Gábor Ribárik ◽  
...  

Abstract Nanocrystalline materials reveal excellent mechanical properties but the mechanism by which they deform is still debated. X-ray line broadening indicates the presence of large heterogeneous strains even when the average grain size is smaller than 10 nm. Although the primary sources of heterogeneous strains are dislocations, their direct observation in nanocrystalline materials is challenging. In order to identify the source of heterogeneous strains in nanocrystalline materials, we prepared Pd-10 pct Au specimens by inert gas condensation and applied high-pressure torsion (HPT) up to γ ≅ 21. High-resolution transmission electron microscopy (HRTEM) and molecular dynamic (MD) simulations are used to investigate the dislocation structure in the grain interiors and in the grain boundary (GB) regions in the as-prepared and HPT-deformed specimens. Our results show that most of the GBs contain lattice dislocations with high densities. The average dislocation densities determined by HRTEM and MD simulation are in good correlation with the values provided by X-ray line profile analysis. Strain distribution determined by MD simulation is shown to follow the Krivoglaz–Wilkens strain function of dislocations. Experiments, MD simulations, and theoretical analysis all prove that the sources of strain broadening in X-ray diffraction of nanocrystalline materials are lattice dislocations in the GB region. The results are discussed in terms of misfit dislocations emanating in the GB regions reducing elastic strain compatibility. The results provide fundamental new insight for understanding the role of GBs in plastic deformation in both nanograin and coarse grain materials of any grain size.


2011 ◽  
Vol 683 ◽  
pp. 103-112 ◽  
Author(s):  
B. Yang

The evolution of the microstructure and mechanical properties of electrodeposited nanocrystalline Ni with different annealing procedures was studied systematically. For the annealed specimens hardness decreases with increasing average grain size but the dependence changes at different grain size ranges. The specimens annealed at a low temperature show higher hardness compared to the as-deposited nanocrystalline Ni, despite an increased measured average grain size. In association with this hardening an increase in elastic modulus and a decrease in microstrain was observed after annealing. With increasing annealing temperature both the tensile strength and the fracture strain were observed to decrease, this is companied with a transition from ductile to brittle in the fracture surfaces. These results indicated that the mechanical behaviour of nanocrystalline Ni depends not only on the average grain size but also on the grain boundary structure. A change in the grain boundary state arising from annealing may be responsible for the observed increase in hardness and elastic modulus as well as the deterioration of tensile properties.


1994 ◽  
Vol 361 ◽  
Author(s):  
Yujing Wu ◽  
Elizabeth G. Jacobs ◽  
Russell F. Pinizzotto ◽  
Robert Tsu ◽  
Hung-Yu Liu ◽  
...  

ABSTRACTThe kinetics of BST thin film grain nucleation and growth caused by rapid thermal annealing have been investigated. A series of Ba0.67Sr0.33Tii0.5O3 films were deposited on Pt electrodes using a metal-organic decomposition process. The effects of anneal time and temperature on BST grain sizes were studied by altering the processing conditions during RTA. A series of films were annealed by RTA at temperatures ranging from 550°C to 950°C for times ranging from 30 to 120 seconds. Crystallographic and microstructural characterization were done using XRD and TEM. The XRD results indicated that BST grain size increased with increasing anneal temperature, but was not affected by anneal time. Plan-view TEM indicated that BST grains were imbedded in an amorphous matrix. The average grain size was on the order of 200 Å.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Ramos A. Mitsuo ◽  
Martínez F. Elizabeth ◽  
Negrete S. Jesús ◽  
Torres-Villaseñor G.

ABSTRACTZinalco alloy (Zn-21mass%Al-2mass%Cu) specimens were deformed superplastically with a strain rate (ε) of 1×10-3 s-1 at homologous temperature (TH) of 0.68 (5 ). It was observed neck formation that indicate nonhomegeneus deformation. Grain size and grain boundaries misorientation changes, due superplastic deformation, were characterized by Orientation Imagining Microscopy (OIM) technique. It was studied three regions in deformed specimens and the results were compared with the results for a specimen without deformation. Average grain size of 1 mm was observed in non-deformed specimen and a fraction of 82% for grain boundary misorientation angles with a grain boundaries angles between 15° and 55° was found. For deformed specimen, the fraction of angles between 15° and 55° was decreced to average value of 75% and fractions of low angle (<5°) and high angle (>55°) misorientations were 10% and 15% respectively. The grain size and high fraction of grain boundary misorientation angles between 15° and 55° observed in the alloy without deformation, are favorable for grain rotation and grain boundary sliding (GBS) procces. The changes observed in the fraction of favorable grain boundary angles during superplastic deformation, shown that the superplastic capacity of Zinalco was reduced with the deformation.


2011 ◽  
Vol 409 ◽  
pp. 373-378
Author(s):  
H. Takano ◽  
Mitsuaki Furui ◽  
Susumu Ikeno ◽  
Tomoyasu Yamaguchi ◽  
Seiji Saikawa

Our recent studies showed that continuous and cellular precipitates are covered with the whole of crystal grain in age hardable AM60 magnesium alloy cast into permanent molds, which have the average grain size of 75-85μm. Also, continuous precipitation is generated nearby grain boundary in the same alloys cast into sand molds, which have the average grain size of 138-147μm. It’s thought that permanent mold castings have the age hardening behavior of intragranular precipitation participation type that is influenced by continuous precipitates. It’s also thought that sand mold castings have the age hardening behavior of grain boundary participation type that is influenced by cellular precipitates. In this study, AM60 magnesium alloy with larger grain size was used to detect the grain size dependence of microstructure and aging behavior. In the microstructure of as-cast condition, the larger the grain size, it was shown that the none-equilibrium crystallized β phase with eutectic reaction during the solidification between liquidus and solidus temperatures becomes large-size. In the age hardening curves, the peak hardness values become higher with decreasing of grain size.


1997 ◽  
Vol 12 (9) ◽  
pp. 2374-2380 ◽  
Author(s):  
Shusheng Jiang ◽  
Walter A. Schulze ◽  
Vasantha R. W. Amarakoon ◽  
Gregory C. Stangle

Nanoparticles of yttria-doped tetragonal zirconia polycrystalline ceramics (Y-TZP) with an average crystallite size of less than 9 nm were prepared by a combustion synthesis process. Dense and fine-grained (<200 nm) Y-TZP ceramics were obtained by fast-firing using temperatures lower than 1400 °C and dwell times of less than 2 min. Impedance spectroscopy was employed to measure conductivities of oxygen vacancies in the grain and the grain boundary of the fine-grained Y-TZP. The relationships between the concentration of the oxygen vacancies in the grain boundary and measurable physical parameters were determined semiquantitatively. The oxygen vacancy concentrations and activation energies for the oxygen-ion conduction in the grain and the grain boundary of the fine-grained Y-TZP were found to be independent of the average grain size in the average grain-size range of 90–200 nm. These experimental results suggest that, in order to retain the abnormally high oxygen vacancy concentrations of the Y-TZP nanoparticles and thus enhance the oxygen-ion conductivity, it may be necessary to decrease the average grain size to approximately 10 nm.


1989 ◽  
Vol 147 ◽  
Author(s):  
Harry A. Atwater ◽  
Walter L. Brown

AbstractAmorphous Si is nucleated heterogeneously at grain boundaries during irradiation of polycrystalline Si by 1.5 MeV Xe+ ions for temperatures of 150–225°C. Following formation at grain boundaries, the amorphous Si layer grows at a rate comparable to the growth rate of a pre-existing amorphous-crystal interface, resulting in a decrease in average grain size and a marked change in the grain size distribution. The heterogeneous nucleation kinetics of amorphous Si are strongly dependent on grain boundary structure. A simple atomistic model for amorphous phase formation, which suggests that the nucleation kinetics are dependent on the point defect mobilities and grain boundary structure, is related to the experimental results.


Sign in / Sign up

Export Citation Format

Share Document