Comparison and Characterization of Two Preparation Methods of Graphene Oxide

2014 ◽  
Vol 989-994 ◽  
pp. 125-129
Author(s):  
Hong Bo Liu ◽  
Wu Ying Zhang ◽  
Feng Lin ◽  
Hong Da Cao

The graphene oxides were prepared form graphite by thermal expansion and ultrasonic dispersion. The structure of graphene oxides was characterized by Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra. The difference of structure of graphene oxides by two preparation methods was compared. The measurement of FTIR and XRD showed the graphite was completely oxidized. The graphene oxide prepared by thermal expansion would lose large number of active functional groups, such as hydroxyl, carboxyl group, et al. However, the graphene oxide prepared by ultrasonic dispersion can retain these active functional groups. These active functional groups will be benefit to chemically modify the graphene oxides and prepare the polymer/graphene nanocomposites.

2016 ◽  
Vol 703 ◽  
pp. 273-277 ◽  
Author(s):  
Hong Bo Liu ◽  
Wu Ying Zhang ◽  
Feng Lin

The graphene oxides were synthesized form graphite by ultrasonic dispersion in water, N-methylpyrrolidone (NMP), N,N-dimethyl-formamide (DMF), acetone and dimethylbenzene, and the polyurethane acrylates containing the reactive NCO (PACN) were prepared. Then the polyurethane acrylates modified graphene oxide synthesized by ultrasonic dispersion in N-methylpyrrolidone (NMP), N,N-dimethyl-formamide (DMF), acetone were prepared by NCO of PACN reacting with the hydroxyl groups of the graphene oxides. The polyurethane acrylates modified graphene oxide was characterized by Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM) and Raman spectra. The FTIR spectra showed that the NCO of PACN reacted with the hydroxyl groups of graphene oxide synthesized by ultrasonic dispersion. The measurement of SEM and Raman spectra showed that the polyurethane acrylates modification didn't change the structure and surface morphology of graphene oxide.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 802 ◽  
Author(s):  
Chii-Rong Yang ◽  
Shih-Feng Tseng ◽  
Yu-Ting Chen

The chemical oxidation method can be used to mass-produce graphene oxides (GOs) from highly oriented pyrolytic graphite. However, numerous oxygen-containing functional groups (hydroxyl, epoxy, carbonyl, etc.) exist in typical GO surfaces, resulting in serious electrical losses. Hence, GO must be processed into reduced graphene oxide (rGO) by the removal of most of the oxygen-containing functional groups. This research concentrates on the reduction efficiency of GO films that are manufactured using atmospheric-pressure and continuous plasma irradiation. Before and after sessions of plasma irradiation with various irradiation times, shelters, and working distances, the surface, physical, and electrical characteristics of homemade GO and rGO films are measured and analyzed. Experimental results showed that the sheet resistance values of rGO films with silicon or quartz shelters were markedly lower than those of GO films because the rGO films were mostly deprived of oxygen-containing functional groups. The lowest sheet resistance value and the largest carbon-to-oxygen ratio of typical rGO films were approximately 90 Ω/sq and 1.522, respectively. The intensity of the C–O bond peak in typical rGO films was significantly lower than that in GO films. Moreover, the intensity of the C–C bond peak in typical rGO films was considerably higher than that in GO films.


2017 ◽  
Vol 89 (4) ◽  
pp. 523-533 ◽  
Author(s):  
Elena Asabina ◽  
Vladimir Pet’kov ◽  
Pavel Mayorov ◽  
Dmitriy Lavrenov ◽  
Igor Schelokov ◽  
...  

AbstractThe phosphates M0.5+x M′x Zr2−x (PO4)3 (M–Ca, Mn, Co, Sr, Cd, Ba, Pb; M′–Mg, Mn, Co) were synthesized by sol-gel method with the following thermal treatment of reaction mixtures. X-ray diffraction, IR spectroscopy and electron microprobe analysis showed that the obtained phosphates crystallized in Sc2(WO4)3 (SW) and NaZr2(PO4)3 (NZP) structural types. Both types of crystal structures are based on a framework comprised of octahedra and tetrahedra, the difference between them is fragments orientation. Thermal expansion of the phosphates was studied in the temperature range 20–800°C. Some compounds were found to belong to low-expanding materials (αav ~2·10−6°C−1).


2020 ◽  
Vol 12 (9) ◽  
pp. 1409-1412
Author(s):  
Jeong-Tae Moon ◽  
Tae-Hyun Nam

The effect of annealing temperature and external stress on the thermal expansion of a Ti–23Nb–0.7Ta–2Zr alloy were investigated by means of thermal expansion tests under constant load and X-ray diffraction (XRD). Negative thermal expansion (NTE), which is a shrinkage during heating, was observed in both a cold rolled and annealed specimens. The intensity of (200)β peak decreased while that of (211)β peak increased as the annealing temperature increased. The difference in expansion rate between 50 °C and 250 °C is found to decrease with an increasing annealing temperature from 600 °C to 800 °C, above which it kept almost constant. The expansion rate decreased as the applied stress increased.


2021 ◽  
Vol 67 ◽  
pp. 25-31
Author(s):  
Sophia R. Figarova ◽  
Elvin M. Aliyev ◽  
Rashad G. Abaszade ◽  
R.I. Alekberov ◽  
Vagif R. Figarov

Graphene oxide/sulphur compound was synthesized by Hammers method. The chemical composition, presence/quantity of functional groups, exfoliation level, number of layers, crystallite size of graphene oxide/sulphur were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy images. The current-voltage characteristics of the samples were measured in air at room temperature. In the I - V characteristic curve of graphene oxide/sulphur compound with the ratio of oxygen to carbon of 3.54 and that to sulphur of 42.54, negative differential resistance was observed. The negative differential resistance is attributed to current carrier transitions between the localized states formed by functional groups.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1180 ◽  
Author(s):  
Elvin Aliyev ◽  
Volkan Filiz ◽  
Muntazim M. Khan ◽  
Young Joo Lee ◽  
Clarissa Abetz ◽  
...  

The purpose of this work is the structural analysis of graphene oxide (GO) and by means of a new structural model to answer the questions arising from the Lerf–Klinowski and the Lee structural models. Surface functional groups of GO layers and the oxidative debris (OD) stacked on them were investigated after OD was extracted. Analysis was performed successfully using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), X-ray photoemission spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy (SSNMR), standardized Boehm potentiometric titration analysis, elemental analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that graphene oxide layers, as well as oxidative debris contain different functional groups such as phenolic –OH, ketone, lactone, carboxyl, quinone and epoxy. Based on these results, a new structural model for GO layers is proposed, which covers all spectroscopic data and explains the presence of the other oxygen functionalities besides carboxyl, phenolic –OH and epoxy groups.


Batteries ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 33 ◽  
Author(s):  
Sahir Naqash ◽  
Marie-Theres Gerhards ◽  
Frank Tietz ◽  
Olivier Guillon

Because of an increasing interest in NaSICON materials as electrolyte materials in all-solid state sodium batteries, their thermal expansion was investigated in this study. The thermal expansion coefficient (CTE) of the Al and Y-substituted NaSICON compositions Na3+2xAlxYxZr2−2xSi2PO12 with 0 ≤ x ≤ 0.3 was obtained by dilatometry and compared to the CTE derived from the lattice parameters using high-temperature X-ray diffraction. The difference in CTE obtained from techniques, the influence of sodium content and central metal cation on CTE, as well as other observations such as phase changes are described and rationalized.


2016 ◽  
Vol 13 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Baghdad Science Journal

Previously many properties of graphene oxide in the field of medicine, biological environment and in the field of energy have been studied. This diversity in properties is due to the possibility of modification on the composition of this Nano compound, where the Graphene oxide is capable of more modification via addition other functional groups on its surface or at the edges of the sheet. The reason for this modification possibility is that the Sp3 hybridization (tetrahedral structure) of the carbon atoms in graphene oxide, and it contains many oxygenic functional groups that are able to reac with other groups. In this research the effect of addition of some amine compounds on electrical properties of graphene oxide has been studied by the preparation of graphene oxide - amino containing compound, which could be classified under Nano carbon compounds containing nitrogen (N-doped carbon nanomaterials). These amines are used as expanders for the distance between the layers of graphene oxide (spacers), and thus prevent agglomeration of graphene oxide layers in addition to enhanced electric properties of graphene oxide. The following amines (thiocarbohydrazide(TCH),o-phenylenediamine(oPD) and poly aniline(PAni)) were used for the preparation of the corresponding amino graphene oxide (GO-TCH, GO-containing Benzoimidazol & benzoxazole, and GO-PAni), and characterized by X-RAY diffraction (XRD) ,infra red spectrum (FTIR) and atomic force microscope (AFM) , also the electrical properties of these materials were studied using inductance, capacitance, and resistance ( LCR) measurements.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 769
Author(s):  
Roksana Muzyka ◽  
Sabina Drewniak ◽  
Tadeusz Pustelny ◽  
Marcin Sajdak ◽  
Łukasz Drewniak

In this paper, various graphite oxide (GO) and reduced graphene oxide (rGO) preparation methods are analyzed. The obtained materials differed in their properties, including (among others) their oxygen contents. The chemical and structural properties of graphite, graphite oxides, and reduced graphene oxides were previously investigated using Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). In this paper, hierarchical clustering analysis (HCA) and analysis of variance (ANOVA) were used to trace the directions of changes of the selected parameters relative to a preparation method of such oxides. We showed that the oxidation methods affected the physicochemical properties of the final products. The aim of the research was the statistical analysis of the selected properties in order to use this information to design graphene oxide materials with properties relevant for specific applications (i.e., in gas sensors).


2013 ◽  
Vol 807-809 ◽  
pp. 515-520 ◽  
Author(s):  
Dong Zhi Chen ◽  
Xue Mei Lin

Graphite oxide was prepared by Hummers method and got graphene oxide by ultrasonic dispersion in water, and using a cheap and environment-friendly fructose as reductant, graphene oxide could be reduced into graphene under mild condition. Meanwhile, the structure and morphology of obtained product was characterized and analyzed by testing methods such as Fourier transform Infrared spectroscopy, X-ray diffraction, Laser Raman spectroscopy, Transmission electron microscope and so on. In addition, the electrical conductivity of obtained graphene was determinated.The experimental results show that graphite oxide can be reduced by fructose under mild conditions and can get graphene with good structure and dispersibility. And the electrical conductivity of graphene prepared by the reduction of graphite oxide with fructose is 35.7 Scm-1, which has great improvement on conducting performance compared with graphite oxide. Moreover, It is non-toxic, non-polluting and friendly to the environment in preparation process of graphene, which lays the groundwork for mass production of graphene materials.


Sign in / Sign up

Export Citation Format

Share Document