scholarly journals The Effect of Boron Nitride on the Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 940 ◽  
Author(s):  
Mualla Öner ◽  
Gülnur Kızıl ◽  
Gülşah Keskin ◽  
Celine Pochat-Bohatier ◽  
Mikhael Bechelany

The thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) composites filled with boron nitride (BN) particles with two different sizes and shapes were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), thermal gravimetric analysis (TGA) and mechanical testing. The biocomposites were produced by melt extrusion of PHBV with untreated BN and surface-treated BN particles. Thermogravimetric analysis (TGA) showed that the thermal stability of the composites was higher than that of neat PHBV while the effect of the different shapes and sizes of the particles on the thermal stability was insignificant. DSC analysis showed that the crystallinity of the PHBV was not affected significantly by the change in filler concentration and the type of the BN nanoparticle but decreasing of the crystallinity of PHBV/BN composites was observed at higher loadings. BN particles treated with silane coupling agent yielded nanocomposites characterized by good mechanical performance. The results demonstrate that mechanical properties of the composites were found to increase more for the silanized flake type BN (OSFBN) compared to silanized hexagonal disk type BN (OSBN). The highest Young’s modulus was obtained for the nanocomposite sample containing 1 wt.% OSFBN, for which increase of Young’s modulus up to 19% was observed in comparison to the neat PHBV. The Halpin–Tsai and Hui–Shia models were used to evaluate the effect of reinforcement by BN particles on the elastic modulus of the composites. Micromechanical models for initial composite stiffness showed good correlation with experimental values.

2017 ◽  
Vol 30 (10) ◽  
pp. 1159-1168 ◽  
Author(s):  
Animesh Sinha ◽  
Nazrul Islam Khan ◽  
Subhankar Das ◽  
Jiawei Zhang ◽  
Sudipta Halder

The effect of reactive (polyethylene glycol) and non-reactive (toluene) diluents on thermal and mechanical properties (tensile strength, hardness and fracture toughness) of diglycidyl ether of bisphenol A epoxy resin (cured by triethylenetetramine) was investigated. The thermal stability and mechanical properties of the epoxy resin modified with reactive and non-reactive diluents at different wt% were investigated using thermo-gravimetric analyser, tensile test, hardness test and single-edge-notched bend test. A minor variation in thermal stability was observed for epoxy resin after addition of polyethylene glycol and toluene at 0.5 wt%; however, further addition of reactive and non-reactive diluents diminished the thermal stability. The addition of 10 wt% of polyethylene glycol in epoxy resin significantly enhances the tensile strength (∼12%), hardness (∼14%) and fracture toughness (∼24%) when compared to that of neat epoxy resin. In contrast, major drop in mechanical performance was observed after addition of toluene in epoxy. Furthermore, fracture surfaces were investigated under field emission scanning electron microscope to elucidate the failure mechanism.


2010 ◽  
Vol 654-656 ◽  
pp. 2220-2224 ◽  
Author(s):  
Takuya Ishimoto ◽  
Takayoshi Nakano

To evaluate the material parameters of regenerated bone, it is important to clarify the mechanical performance of the regenerated portion. In general, the shape and size of regenerated bone tissue is heterogeneous. It is often difficult to elucidate material properties by means of conventional mechanical tests such as compressive and/or tensile tests and bending tests. The nanoindentation technique has been utilized to evaluate the material properties of small or microstructured materials because they do not necessarily require a large well-designed specimen. Thus, this technique may be useful for the evaluation of the material properties of regenerated bone tissue. In this study, this technique was applied for the assessment of the Young’s modulus and hardness of regenerated and intact long bones of a rabbit. The regenerated bone exhibited a significantly lower Young’s modulus and hardness than the intact bone. The regenerated long bone also exhibited impaired mechanical properties, which may have been caused by the difference in the nano-organization of its collagen fibers and mineral crystals (the main components of bone tissue), from that of the intact bone.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Sayant Saengsuwan

AbstractThe influence of annealing on the microstructure and molecular orientation, thermal behaviour and mechanical properties of uniaxially drawn iPP thin film was studied by wide-angle X-ray diffraction, differential scanning calorimetry and tensile testing, respectively. The correlations of mechanical and microstructural properties of annealed films were also examined. The transformation of smectic phase of iPP to the α-form was more pronounced with increasing annealing time and temperature. The true and apparent crystallinities and crystal thickness were strongly enhanced with annealing time and temperature. The relative molecular orientation tended to increase with annealing time. These results caused the significant improvement of modulus and tensile strength of the annealed films in both machine (MD) and transverse (TD) directions. The increases in MD-Young’s modulus and MD-tensile strength were well correlated with the increase in true crystallinity obtained in equatorial scans. Some relationship between the increase in crystal thickness and the increase in Young’s modulus in both MD and TD directions was also found.


2012 ◽  
Vol 472-475 ◽  
pp. 1813-1817 ◽  
Author(s):  
Yu Lin Yang ◽  
Zhe Yong Fan ◽  
Ning Wei ◽  
Yong Ping Zheng

In this paper the mechanical properties of a series of hydrogen functionalized graphyne are investigated through acting tensile loads on the monolayer networks. Molecular dynamics simulations are performed to calculate the fracture strains and corresponding maximum forces for pristine graphyne along both armchair and zigzag directions. Furthermore, hydrogen functionalized graphynes with different functionalization sites are analyzed to investigate the effect of functionlization on the mechanical performance. Finally, Young's modulus of all the investigated architectures are computed. The obtained results show that monolayer graphyne is mechanically stable with high strength and stiffness, and the mechanical performance can be tuned through structure engineering and functionalization.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4459 ◽  
Author(s):  
Piotr Franciszczak ◽  
Iman Taraghi ◽  
Sandra Paszkiewicz ◽  
Maksymilian Burzyński ◽  
Agnieszka Meljon ◽  
...  

In this article, the effect of the addition of halloysite nanotube (HNT) on the mechanical and thermal stability of polypropylene (PP) and PP/kenaf fiber biocomposites has been investigated. Different volume contents of HNTs ranging from 1 to 10 vol.% were melt mixed with PP and PP/kenaf fibers. The volume content of kenaf fibers was kept constant at 30%. The morphology of HNTs within the PP matrix has been studied via scanning electron microscopy (SEM). The morphological results revealed that HNT was uniformly dispersed in the PP matrix already at a low concentration of 1 and 2 vol.%. The mechanical properties of the manufactured nanocomposites and hybrid biocomposites such as Young’s modulus, tensile strength, elongation at break, flexural modulus, flexural strength, and notched Izod strength have been measured. The results show that Young’s modulus and strengths have been improved along with the addition of low content of HNTs. Moreover, the gain of notched Izod impact strength obtained by the addition of short kenaf fibers was maintained in hybrids with low concentrations of HNTs. Finally, the thermogravimetric analysis shows that at 10% and 50% weight loss, the thermal degradation rate of the PP and PP/kenaf biocomposites decreased by the addition of HNTs.


2003 ◽  
Vol 767 ◽  
Author(s):  
A. Tregub ◽  
G. Ng ◽  
M. Moinpour

AbstractSoak of polyurethane-based CMP pads in tungsten slurry and de-ionized water and its effect on retention of thermal and mechanical properties of the pads was studied using Dynamic Mechanical Analysis (DMA), Thermal Mechanical Analysis (TMA), Thermal Gravimetric Analysis (TGA), and Modulated Differential Scanning Calorimetry (MDSC). Simultaneous cross-linking and plastisizing due to soak were established using DMA and MDSC analysis. The stable operating temperature range and its dependence on soak time were determined using TMA analysis. Substantial difference in diffusion behavior of the “soft” and “hard” pads was discovered: diffusion into the hard pads followed Fickian law [1], while diffusion into the multi-layer soft pads was dominated by the fast filling of the highly porous pad surface with liquid.During a traditional CMP process, which involves application of polishing pads and slurry, the pad properties can be substantially and irreversibly changed as the result of slurry/rinse water absorption.The retention of the pad properties after exposure was monitored using such thermal and mechanical techniques, as Thermal Mechanical Analysis (TMA), Dynamical Mechanical Analysis (DMA), Modulated Differential Scanning Calorimetry (MDSC), Thermal Gravimetric Analysis (TGA).


2012 ◽  
Vol 1485 ◽  
pp. 77-82 ◽  
Author(s):  
A Parada-Soria ◽  
HF Yao ◽  
B Alvarado-Tenorio ◽  
L Sanchez-Cadena ◽  
A Romo-Uribe

ABSTRACTIn this research the thermal and mechanical properties of composites based on recycled high-density polyethylene (HDPE) and recycled Tetrapak have been investigated. The matrix and filler are recovered from landfills. Multicolor HDPE mixtures, with varying concentration of tetrapack flakes, are hot pressed, as well as single color HDPE flakes. Previous studies determine that the nature of the pigment (organics vs. inorganics) strongly influence the mechanical behavior of multicolor HDPE-tetrapack composites. Thus, this research focuses on single color HDPE hot pressed plaques. The kinetics of crystallization under isothermal conditions is determined by differential scanning calorimetry (DSC). The results show that the crystallization kinetics obeys the Avrami theory, and that the Avrami exponent is 1, irrespective of the pigment in use. Small-angle light scattering is applied to investigate the internal structure of the pigmented HDPE. SALS patterns show that the samples exhibited oriented morphologies. However, after melting and slow cooling under pressure the samples exhibit an isotropic morphology. This is confirmed by polarized optical microscopy. Mechanical properties such as Young’s modulus, yield stress and ultimate tensile stress are obtained under uniaxial tensile deformation at room temperature. For the single color HDPE plaques the Young’s modulus is reduced (after melting), suggesting that the anisotropic molecular chains contribute to the higher value of Young’s modulus.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1175
Author(s):  
Pavel A. Somov ◽  
Eugene S. Statnik ◽  
Yuliya V. Malakhova ◽  
Kirill V. Nyaza ◽  
Alexey I. Salimon ◽  
...  

Recent years witnessed progressive broadening of the practical use of 3D-printed aluminium alloy parts, in particular for specific aerospace applications where weight saving is of great importance. Selective laser melting (SLM) is an intrinsically multi-parametric fabrication technology that offers multiple means of controlling mechanical properties (elastic moduli, yield strength, and ductility) through the control over grains size, shape, and orientation. Targeted control over mechanical properties is achieved through the tuning of 3D-printing parameters and may even obviate the need of heat treatment or mechanical post-processing. Systematic studies of grain structure for different printing orientations with the help of EBSD techniques in combination with mechanical testing at different dimensional levels are the necessary first steps to implement this agenda. Samples of 3D-printable Al-Mg-Si RS-333 alloy were fabricated in three orientations with respect to the principal build direction and the fast laser beam scanning direction. Sample structure and proper-ties were investigated using a number of techniques, including EBSD, in situ SEM tensile testing, roughness measurements, and nanoindentation. The as-printed samples were found to display strong variation in Young’s modulus values from nanoindentation (from 43 to 66 GPa) and tensile tests (from 54 to 75 GPa), yield stress and ultimate tensile strength (100–195 and 130–220 MPa) in different printing orientations, and almost constant hardness of about 0.8 GPa. A further preliminary study was conducted to assess the effect of surface finishing on the mechanical performance. Surface polishing was seen to reduce Young’s modulus and yield strength but improves ductility, whereas the influence of sandblasting was found to be more controversial. The experimental results are discussed in connection with the grain morphology and orientation.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1551
Author(s):  
Camelia Gabor ◽  
Daniel Cristea ◽  
Ioana-Laura Velicu ◽  
Tibor Bedo ◽  
Andrea Gatto ◽  
...  

The development of novel Ti-based amorphous or β-phase nanostructured metallic materials could have significant benefits for implant applications, due to improved corrosion and mechanical characteristics (lower Young’s modulus, better wear performance, improved fracture toughness) in comparison to the standardized α+β titanium alloys. Moreover, the devitrification phenomenon, occurring during heating, could contribute to lower input power during additive manufacturing technologies. Ti-based alloy ribbons were obtained by melt-spinning, considering the ultra-fast cooling rates this method can provide. The titanium alloys contain in various proportions Zr, Nb, and Si (Ti60Zr10Si15Nb15, Ti64Zr10Si15Nb11, Ti56Zr10Si15Nb19) in various proportions. These elements were chosen due to their reported biological safety, as in the case of Zr and Nb, and the metallic glass-forming ability and biocompatibility of Si. The morphology and chemical composition were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy, while the structural features (crystallinity, phase attribution after devitrification (after heat treatment)) were assessed by X-ray diffraction. Some of the mechanical properties (hardness, Young’s modulus) were assessed by instrumented indentation. The thermal stability and crystallization temperatures were measured by differential thermal analysis. High-intensity exothermal peaks were observed during heating of melt-spun ribbons. The corrosion behavior was assessed by electrocorrosion tests. The results show the potential of these alloys to be used as materials for biomedical applications.


2021 ◽  
Vol 317 ◽  
pp. 333-340
Author(s):  
Mohammed Zorah ◽  
Izan Roshawaty Mustapa ◽  
Norlinda Daud ◽  
Nahida Jumah ◽  
Nur Ain Syafiqah Sudin ◽  
...  

Poly (lactic acid) (PLA) is a useful alternative to petrochemical commodity material used in such as in food packaging industries. Due to its inherent brittleness, low thermal stability, and poor crystallization, it needs to improve its properties, namely in terms of thermal and mechanical performance. The plasticized PLA composites reinforced with nanofiller were prepared by solvent casting and hot press methods. Thermal and mechanical properties, as well as the crystallinity study of these nanocomposites, were investigated to study the effect of tributyl citrate (TBC) and TiO2 on the PLA composites. The addition of TBC improved the flexibility and crystallinity of the composites. Reinforcement of TiO2 was found as a practical approach to improve the mechanical properties, thermal stability, and enhanced crystalline ability for plasticized PLA nanocomposites. Based on the results achieved in this study, the composite with 3.5% nanofiller (pPLATi3.5) presented the optimum set of mechanical properties and improved thermal stability.


Sign in / Sign up

Export Citation Format

Share Document