scholarly journals A Standardized Extract of Asparagus officinalis Stem (ETAS®) Ameliorates Cognitive Impairment, Inhibits Amyloid β Deposition via BACE-1 and Normalizes Circadian Rhythm Signaling via MT1 and MT2

Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Yin-Ching Chan ◽  
Ci-Sian Wu ◽  
Tsai-Chen Wu ◽  
Yu-Hsuan Lin ◽  
Sue-Joan Chang

The prevalence of cognitive impairments and circadian disturbances increases in the elderly and Alzheimer’s disease (AD) patients. This study investigated the effects of a standardized extract of Asparagus officinalis stem, ETAS® on cognitive impairments and circadian rhythm status in senescence-accelerated mice prone 8 (SAMP8). ETAS® consists of two major bioactive constituents: 5-hydroxymethyl-2-furfural (HMF), an abundant constituent, and (S)-asfural, a novel constituent, which is a derivative of HMF. Three-month-old SAMP8 male mice were divided into a control, 200 and 1000 mg/kg BW ETAS® groups, while senescence-accelerated resistant mice (SAMR1) were used as the normal control. After 12-week feeding, ETAS® significantly enhanced cognitive performance by an active avoidance test, inhibited the expressions of amyloid-beta precursor protein (APP) and BACE-1 and lowered the accumulation of amyloid β (Aβ) in the brain. ETAS® also significantly increased neuron number in the suprachiasmatic nucleus (SCN) and normalized the expressions of the melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). In conclusion, ETAS® enhances the cognitive ability, inhibits Aβ deposition and normalizes circadian rhythm signaling, suggesting it is beneficial for preventing cognitive impairments and circadian rhythm disturbances in aging.

npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Changyoun Kim ◽  
Armine Hovakimyan ◽  
Karen Zagorski ◽  
Tatevik Antonyan ◽  
Irina Petrushina ◽  
...  

AbstractAccumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson’s disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain. To ensure sufficient therapeutic concentrations of anti-α-Syn antibodies in the periphery and CNS, we developed four α-Syn DNA vaccines based on the universal MultiTEP platform technology designed especially for the elderly with immunosenescence. Here, we are reporting on the efficacy and immunogenicity of these vaccines targeting three B-cell epitopes of hα-Syn aa85–99 (PV-1947D), aa109–126 (PV-1948D), aa126–140 (PV-1949D) separately or simultaneously (PV-1950D) in a mouse model of synucleinopathies mimicking PD/DLB. All vaccines induced high titers of antibodies specific to hα-Syn that significantly reduced PD/DLB-like pathology in hα-Syn D line mice. The most significant reduction of the total and protein kinase resistant hα-Syn, as well as neurodegeneration, were observed in various brain regions of mice vaccinated with PV-1949D and PV-1950D in a sex-dependent manner. Based on these preclinical data, we selected the PV-1950D vaccine for future IND enabling preclinical studies and clinical development.


2021 ◽  
Author(s):  
Fabrício A. Pamplona ◽  
Gabriela Vitória ◽  
Felipe C. Ribeiro ◽  
Carolina A. Moraes ◽  
Pitia F. Ledur ◽  
...  

Age increases the risk for cognitive impairment and is the single major risk factor for Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. The pathophysiological processes triggered by aging that render the brain vulnerable to dementia involve, at least in part, changes in inflammatory mediators. Here we show that lipoxin A4 (LXA4), a lipid mediator of inflammation resolution known to stimulate endocannabinoid signaling in the brain, is reduced in the aging central nervous system. We demonstrate that genetic suppression of 5-lipoxygenase (5-LOX), the enzyme mediating LXA4 synthesis, promotes learning impairment in mice. Conversely, administration of exogenous LXA4 attenuated cytokine production and memory loss induced by inflammation in mice. We further show that cerebrospinal fluid LXA4 is reduced in patients with dementia and positively associates with memory performance, brain-derived neurotrophic factor (BDNF), and AD-linked amyloid-β. Our findings suggest that reduced LXA4 levels may lead to vulnerability to age-related cognitive disorders and that promoting LXA4 signaling may comprise an effective strategy to prevent early cognitive decline in AD.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10262
Author(s):  
Qiong Wu ◽  
Qifa Li ◽  
Xuan Zhang ◽  
Michael Ntim ◽  
Xuefei Wu ◽  
...  

Background Alzheimer’s disease (AD), being a complex disorder, is affected either by genetic or environmental factors or both. It is observed that there is an excessive accumulation of amyloid β (Aβ) in the extracellular space of the brain. AD is the first neurodegenerative disease in the elderly, and so far there is no effective treatment. In recent years, many studies have reported that Alzheimer’s disease has a relationship with gut microflora, indicating that regulating gut microbiota could offer therapeutic intervention for AD. This study explored the effect Bifidobacteria has in averting AD. Methods WT and APP/PS1 mice were used for the experiments. The mice were randomly assigned to four groups: WT group, WT + Bi group, AD group (APP/PS1 mouse) and AD + Bi group (Bifidobacteria-treated APP/PS1 mouse). Treatment with Bifidobacteria lasted for 6 months and mice were prepared for immunohistochemistry, immunofluorescence, Thioflavin S staining, Western blotting, PCR and Elisa quantitative assay. Results The results show that after 6 months of treatment with Bifidobacteria signiis to be lesficantly reduces Aβ deposition in cortex and hippocampus of AD mice. The level of insoluble Aβ in the hippocampus and cortex of AD+Bi mice was decreased compared with AD mice. Meanwhile, a significant decrease in the level of soluble Aβ in the cortex of AD+Bi mice but not in the hippocampus was observed. The activation of microglia and the release of inflammatory factors were also determined in this study. From the results, Bifidobacteria inhibited microglial activation and reduced IL-1β, TNF-α, IL-4, IL-6 and INF-γ release. Altogether, these results implied that Bifidobacteria can alleviate the pathological changes of AD through various effects.


2021 ◽  
Author(s):  
Suzanne Lam ◽  
Susana Boluda ◽  
Anne Sophie Herard ◽  
Fanny Petit ◽  
Sabiha Eddarkaoui ◽  
...  

Alzheimer's disease (AD) is characterized by synaptic alterations that lead to cognitive impairments and by a number of lesions including extracellular amyloid–β (Aβ) plaques, intracellular tau accumulation and neuroinflammation. The contribution of these lesions to synaptic alterations is still debated. Through the intracerebral injection of human AD brain extracts into an Aβ plaque–bearing mouse model that does not overexpress tau we recapitulated all these AD lesions. In particular neuritic plaques, AD-like neurofibrillary tangles and neuropil threads, that spread through the brain, were identified and characterized. Interestingly neuritic plaques but not other tau-positive lesions were observed in control-inoculated animals as well as in non-inoculated amyloid-bearing mice, suggesting that these lesions do not require exogeneous tau to be initiated. Inoculation of different human AD brain extracts to mice led to lesional heterogeneity and to enhanced synaptic loss and cognitive impairments. Relationships between synaptic alterations or cognitive impairments and AD pathology were evaluated by exploiting the induced lesional heterogeneity. Synaptic loss and cognitive deficits were associated with the severity of tau lesions and to lower microglial load, but not to amyloid load. Our results outline that new mouse models of AD bearing both Aβ plaques and tau lesions, and based on AD brain extracts inoculation, allow to investigate AD neurodegenerative processes. They highlight the contribution of tau to synaptic impairments in a model that does not rely on genetic manipulation of tau protein and indicate that microglial activity may protect against synaptic loss.


2016 ◽  
Vol 21 (2) ◽  
pp. 28-37
Author(s):  
Oscar Solís-Salgado ◽  
José Luis López-Payares ◽  
Mauricio Ayala-González

Las vías de drenaje solutos del sistema nervioso central (SNC) participan en el recambio de liquido intersticial con el líquido cefalorraquídeo (LIT-LCR), generando un estado de homeostasis. Las alteraciones dentro de este sistema homeostático afectará la eliminación de solutos del espacio intersticial (EIT) como el péptido βa y proteína tau, los cuales son sustancias neurotóxicas para el SNC. Se han utilizado técnicas experimentales para poder analizar el intercambio LIT-LCR, las cuales revelan que este intercambio tiene una estructura bien organizada. La eliminación de solutos del SNC no tiene una estructura anatómica propiamente, se han descubierto vías de eliminación de solutos a través de marcadores florecentes en el espacio subaracnoideo, cisternas de la base y sistema ventricular que nos permiten observar una serie de vías ampliamente distribuidas en el cerebro. El LCR muestra que tiene una función linfática debido a su recambio con el LIT a lo largo de rutas paravasculares. Estos espacios que rodean la superficie arterial así como los espacios de Virchow-Robin y el pie astrocitico junto con la AQP-4, facilitan la entrada de LCR para-arterial y el aclaramiento de LIT para-venoso dentro del cerebro. El flujo y dirección que toma el LCR por estas estructuras, es conducido por la pulsación arterial. Esta función será la que finalmente llevara a la eliminación de estas sustancias neurotóxicas. En base a la dependencia de este flujo para la eliminación de sustancias se propone que el sistema sea llamado “ la Vía Glinfática”. La bibliografía así como las limitaciones que se encuentran en esta revisión están dadas por la metodología de búsqueda que ha sido realizada principalmente en PubMed utilizando los siguientes términos Mesh: Cerebral Arterial Pulsation, the brain via paravascular, drainage of amyloid-beta, bulk flow of brain interstitial fluid, radiolabeled polyethylene glycols and albumin, amyloid-β, the perivascular astroglial sheath, Brain Glymphatic Transport.


2019 ◽  
Vol 19 (5) ◽  
pp. 342-348 ◽  
Author(s):  
Zhi-You Cai ◽  
Chuan-Ling Wang ◽  
Tao-Tao Lu ◽  
Wen-Ming Yang

Background:Liver kinase B1 (LKB1)/5’-adenosine monophosphate-activated protein kinase (AMPK) signaling, a metabolic checkpoint, plays a neuro-protective role in the pathogenesis of Alzheimer’s disease (AD). Amyloid-β (Aβ) acts as a classical biomarker of AD. The aim of the present study was to explore whether berberine (BBR) activates LKB1/AMPK signaling and ameliorates Aβ pathology.Methods:The Aβ levels were detected using enzyme-linked immunosorbent assay and immunohistochemistry. The following biomarkers were measured by Western blotting: phosphorylated (p-) LKB1 (Ser334 and Thr189), p-AMPK (AMPKα and AMPKβ1), synaptophysin, post-synaptic density protein 95 and p-cAMP-response element binding protein (p-CREB). The glial fibrillary acidic protein (GFAP) was determined using Western blotting and immunohistochemistry.Results:BBR inhibited Aβ expression in the brain of APP/PS1 mice. There was a strong up-regulation of both p-LKB1 (Ser334 and Thr189) and p-AMPK (AMPKα and AMPKβ1) in the brains of APP/PS1 transgenic mice after BBR-treatment (P<0.01). BBR promoted the expression of synaptophysin, post-synaptic density protein 95 and p-CREB(Ser133) in the AD brain, compared with the model mice.Conclusion:BBR alleviates Aβ pathogenesis and rescues synapse damage via activating LKB1/AMPK signaling in the brain of APP/PS1 transgenic mice.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 508
Author(s):  
Sara Silva ◽  
António J. Almeida ◽  
Nuno Vale

Parkinson’s disease (PD) affects around ten million people worldwide and is considered the second most prevalent neurodegenerative disease after Alzheimer’s disease. In addition, there is a higher risk incidence in the elderly population. The main PD hallmarks include the loss of dopaminergic neurons and the development of Lewy bodies. Unfortunately, motor symptoms only start to appear when around 50–70% of dopaminergic neurons have already been lost. This particularly poses a huge challenge for early diagnosis and therapeutic effectiveness. Actually, pharmaceutical therapy is able to relief motor symptoms, but as the disease progresses motor complications and severe side-effects start to appear. In this review, we explore the research conducted so far in order to repurpose drugs for PD with the use of nanodelivery systems, alternative administration routes, and nanotheranostics. Overall, studies have demonstrated great potential for these nanosystems to target the brain, improve drug pharmacokinetic profile, and decrease side-effects.


2021 ◽  
pp. 1-17
Author(s):  
Alvaro Miranda ◽  
Enrique Montiel ◽  
Henning Ulrich ◽  
Cristian Paz

Alzheimer’s disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979, Verubecestat, LY2886721, Lanabecestat, LY2811376, and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse the disease. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and the activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.


Sign in / Sign up

Export Citation Format

Share Document