scholarly journals Brain Alterations in High Fat Diet Induced Obesity: Effects of Tart Cherry Seeds and Juice

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 623 ◽  
Author(s):  
Maria Vittoria Micioni Di Bonaventura ◽  
Ilenia Martinelli ◽  
Michele Moruzzi ◽  
Emanuela Micioni Di Bonaventura ◽  
Maria Elena Giusepponi ◽  
...  

Evidence suggests that obesity adversely affects brain function. High body mass index, hypertension, dyslipidemia, insulin resistance, and diabetes are risk factors for increasing cognitive decline. Tart cherries (Prunus Cerasus L.) are rich in anthocyanins and components that modify lipid metabolism. This study evaluated the effects of tart cherries on the brain in diet-induced obese (DIO) rats. DIO rats were fed with a high-fat diet alone or in association with a tart cherry seeds powder (DS) and juice (DJS). DIO rats were compared to rats fed with a standard diet (CHOW). Food intake, body weight, fasting glycemia, insulin, cholesterol, and triglycerides were measured. Immunochemical and immunohistochemical techniques were performed. Results showed that body weight did not differ among the groups. Blood pressure and glycemia were decreased in both DS and DJS groups when compared to DIO rats. Immunochemical and immunohistochemical techniques demonstrated that in supplemented DIO rats, the glial fibrillary acid protein expression and microglial activation were reduced in both the hippocampus and in the frontal cortex, while the neurofilament was increased. Tart cherry intake modified aquaporin 4 and endothelial inflammatory markers. These findings indicate the potential role of this nutritional supplement in preventing obesity-related risk factors, especially neuroinflammation.

1999 ◽  
Vol 58 (4) ◽  
pp. 773-777 ◽  
Author(s):  
John E. Blundell ◽  
John Cooling

It is now widely accepted that obesity develops by way of genetic mechanisms conferring specific dispositions which interact with strong environmental pressures. It is also accepted that certain dispositions constitute metabolic risk factors for weight gain. It is less well accepted that certain patterns of behaviour (arising from biological demands or environmental influences) put individuals at risk of developing a positive energy balance and weight gain (behavioural risk factors). Relevant patterns of behaviour include long-lasting habits for selecting and eating particular types of foods. Such habits define two distinct groups characterized as high-fat (HF) and low-fat (LF) phenotypes. These habits are important because of the attention given to dietary macronutrients in body-weight gain and the worldwide epidemic of obesity. Considerable evidence indicates that the total amount of dietary fat consumed remains the most potent food-related risk factor for weight gain. However, although habitual intake of a high-fat diet is a behavioural risk factor for obesity, it does not constitute a biological inevitability. A habitual low-fat diet does seem to protect against the development of obesity, but a high-fat diet does not guarantee that an individual will be obese. Although obesity is much more prevalent among HF than LF, some HF are lean with BMI well within the normal range. The concept of 'different routes to obesity' through a variety of nutritional scenarios can be envisaged, with predisposed individuals varying in their susceptibility to different dietary inputs. In a particular subgroup of individuals (young adult males) HF and LF displayed quite different profiles of appetite control, response to nutrient challenges and physiological measures, including BMR, RQ, heart rate, plasma leptin levels and thermogenic responses to fat and carbohydrate meals. These striking differences suggest that HF and LF can be used as a conceptual tool to investigate the relationship between biology and the environment (diet) in the control of body weight.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Shiori Minabe ◽  
Kinuyo Iwata ◽  
Youki Watanabe ◽  
Hitoshi Ozawa

Abstract Female obesity is associated with menstrual dysfunction leading to anovulation and infertility. It has recently been reported obesity-induced infertility is involved in the dysfunction of a kisspeptin neuron, a key player in reproduction via direct stimulation of gonadotropin releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. Previous studies reported that obesity due to high-fat diet (HFD) for 8 months induced a disruption in estrous cyclicity, caused by a decrease in Kiss1 (coding kisspeptin) expression in the hypothalamic arcuate nucleus (ARC) in female rodents. Here we showed the effects of shorter-term (4 months) HFD on pulsatile LH secretion and hypothalamic Kiss1 expression to show pathogenic mechanism underlying obesity-induced infertility. Female Wistar-Imamichi strain rats (7 weeks old) fed on either a standard diet (10% calories from fat) or a high-fat diet (45% calories from fat) for 4 months. Estrous cyclicity and body weight were monitored regularly. All animals were implanted with a jugular catheter and collected blood samples to analyze pulsatile LH secretion, after a week of the ovariectomy with low-dose replacement estradiol to negate influence of changes in ovarian steroid levels and mimic diestrous levels of plasma estrogen. On the next day of the blood sampling, rats were perfused with 0.05 M PBS followed by 4% paraformaldehyde and their brains were collected for in situ hybridization of Kiss1 and Gnrh1. The HFD-fed rats showed progressive increases in body weight, along with hyperphagia and adipose tissue accumulation, compared with control animals. Fifty-eight percent of the HFD-fed rats exhibited irregular estrous cycles, whereas remaining HFD-fed rats showed regular cycles. Two out of 7 rats showing HFD-induced irregular estrous cycles exhibited profound suppression of the LH pulse frequency and the number of Kiss1-expressing cells in the ARC, whereas remaining HFD-fed rats showed normal LH pulses and ARC Kiss1 expressions. The number of Kiss1-expressing cells in the ARC had close positive correlation with LH pulse frequency (R2=0.6872, P<0.001) in both groups. Additionally, the number of Kiss1- or Gnrh1-expressing cells in the anteroventral periventricular nucleus or the preoptic area, were comparable between groups. Taken together, our finding reveals the possibility that irregular menstruation was also induced by changes in the kisspeptin-GnRH independent pathway during the incipient stage of obese infertility.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1966 ◽  
Author(s):  
Nemes ◽  
Homoki ◽  
Kiss ◽  
Hegedűs ◽  
Kovács ◽  
...  

Male C57BL/6J mice were used to determine the possible therapeutic effects of our previously described tart cherry extract in a chronic obesity mouse model on metabolic parameters, glucose tolerance, inflammatory mediators, and antioxidant capacity. The control group received standard mouse chow, and the high fat control group was switched to a high fat diet and tap water supplemented with 5% sucrose. The high fat + anthocyanin group received the high fat and sucrose diet, but received the anthocyanin-rich tart cherry extract dissolved in their drinking water. After six weeks, an oral glucose tolerance test was performed, and the water-soluble antioxidant capacity (ACW), superoxide dismutase (SOD) activity, and the plasma levels of insulin, C-peptide, leptin, IL-6, MCP-1, adiponectin and resistin were measured. The high fat diet increased body weight, reduced glucose tolerance, and caused an elevation in leptin, IL-6, MCP-1, and resistin levels. Furthermore, antioxidant capacity was decreased with a significant elevation of SOD activity. Anthocyanin treatment failed to reverse the effects of the high fat diet on body weight and glucose tolerance, but significantly reduced the leptin and IL-6 levels. The tart cherry extract also made a significant enhancement in antioxidant capacity and SOD activity. Our results show that chronic anthocyanin intake has a potential to enhance redox status and alleviate inflammation associated with obesity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mercè Hereu ◽  
Sara Ramos-Romero ◽  
Cristina Busquets ◽  
Lidia Atienza ◽  
Susana Amézqueta ◽  
...  

Abstract Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets. The aim of this study is to explore the possible additive effects of d-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and related risk factors during early stages in the development of fat-induced pre-diabetes. Male Sprague Dawley (SD) rats were fed a standard diet, or a high-fat (HF) diet supplemented with d-fagomine, EPA/DHA 1:1, a combination of both, or neither, for 24 weeks. The variables measured were fasting glucose and glucose tolerance, plasma insulin, liver inflammation, fecal/cecal gut bacterial subgroups and short-chain fatty acids (SCFAs). The animals supplemented with d-fagomine alone and in combination with ω-3 PUFAs accumulated less fat than those in the non-supplemented HF group and those given only ω-3 PUFAs. The combined supplements attenuated the high-fat-induced incipient insulin resistance (IR), and liver inflammation, while increasing the cecal content, the Bacteroidetes:Firmicutes ratio and the populations of Bifidobacteriales. The functional effects of the combination of d-fagomine and EPA/DHA 1:1 against gut dysbiosis and the very early metabolic alterations induced by a high-fat diet are mainly those of d-fagomine complemented by the anti-inflammatory action of ω-3 PUFAs.


2011 ◽  
Vol 106 (12) ◽  
pp. 1810-1813 ◽  
Author(s):  
Jason K. Higa ◽  
Wanyu Liu ◽  
Marla J. Berry ◽  
Jun Panee

Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine up-regulated in obese subjects, contributing to the development of type 2 diabetes. The present study investigated the inhibitory effect of an ethanol–water extract from bamboo (BEX,Phyllostachys edulis) on the blood concentration of MCP-1. C57BL/6J mice were fed a standard diet or a high-fat diet with or without the BEX supplement (11 g dry mass/17 000 kJ) for 6 months. A total of ten mice were used in each group. Body weight and food consumption were measured weekly. After euthanisation, the weight of visceral fat and circulating MCP-1 concentration were measured. In comparison with the standard control group, the high-fat control group had increased body weight, abdominal fat storage and serum MCP-1 concentration by 60 % (P < 0·001), 266 % (P < 0·001) and 180 % (P < 0·01), respectively. In comparison with the high-fat control group, the high-fat BEX group showed a 3 % decrease in body weight (P < 0·01), 24 % decrease in mesenteric fat depot (P < 0·01) and 49 % decrease in serum MCP-1 concentration (P < 0·05). The present study suggests that the BEX supplement in the high-fat diet ameliorates elevated MCP-1 concentrations in the blood, and whether this is related to modulated endocrine properties of the visceral fat is to be studied.


Author(s):  
Souhaila Benchaoui ◽  
Meriem Gueracheha ◽  
Asma Boutebsou

Obesity causes many pathologies; no therapeutic axis has provided an effective solution to this problem. The use of herbal medicine with healthy food and physical activity is recommended, and essential oils are the best known of these natural substances. The objective of this study is to evaluate the effect of Citrus limon essential oil on body weight and lipid profile. The plant material is the lemon; the extraction method is hydrodistillation. The experiment lasted 20 days and involved 15 female rats (2 to 3 months old) weighing between 160g and 230g. The rats were divided into 3 groups: the first receiving a standard diet, the second receiving a high-fat diet, and the third receiving a high-fat diet and treated with essential oil. The extraction yield is 1.69%. The physicochemical characteristics comply with AFNOR. This study shows that a high-lipid diet induces obesity characterized by hyperlipidemia. Intraperitoneal administration of the essential oil caused a decrease in body weight, abdominal circumference, plasma total cholesterol, and triglycerides and an increase in HDL-cholesterol. Considering this study, we found that lemon essential oil has beneficial effects on metabolic alterations. Its inclusion in the diet may help improve the metabolic profile and reduce the incidence of obesity and its long-term complications.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 699-699
Author(s):  
Caroline Silva ◽  
Priscila Fassini ◽  
Leandra Ramalho ◽  
Daniela Sartori ◽  
Vivian Suen

Abstract Objectives Curcuma supplementation has been investigated to prevent or treat obesity. However, evidence suggests development of pancreatic steatosis as well. In this context, the aim of this study was to investigate the effect of different doses of curcumin supplementation on weight, biochemical profile, and histological analysis of the pancreas and liver of mice fed a high-fat diet. Methods This was an experimental, longitudinal and randomized study. Fifty C57BL/6 male mice, thirty days age, were separated into five groups: 1. Standard diet (n = 10); 2. High-fat diet (n = 10); 3. High-fat diet plus 50 mg of curcumin/kg of body weight (n = 10); 4. High-fat diet plus 250 mg of curcumin/kg of body weight (n = 10); 5. High-fat diet plus 500 mg of curcumin/kg of body weight (n = 10). Group 1 was fed a standard control diet (AIN 93 G), group 2 was fed a purified high-fat diet (AIN 93 HF 60%) and both groups received only the vehicle (carboxymethyl cellulose - CMC 1%) by gavage. Mice from groups 3, 4 and 5 were fed a purified high-fat diet (AIN 93 HF 60%) plus curcumin at different doses (50, 250 and 500 mg/kg of body weight diluted in 1% CMC) by gavage for twelve weeks. All groups received food and water ad libitum. At the end of the experimental period, we analysed lipid profile, blood glucose, insulin, histology of the pancreas and liver. ANOVA one way and Kruskal-Wallis analysis were performed and a value of P ˂ 0.05 was used to denote statistical significance. Results Curcumin supplementation did not improve weight and biochemical profile. Additionally, histological changes were not observed at any dose of supplementation. Pancreatic or hepatic steatosis was not evidenced in high-fat diet groups and also in the groups who received curcumin, suggesting no toxic effects at the different doses of supplementation provided. Conclusions Our results suggest that curcumin supplementation has no beneficial effect on weight gain prevention and biochemical profile, regardless of the dose administered. Funding Sources FAPESP (São Paulo Research Foundation).


2020 ◽  
Vol 127 (6) ◽  
pp. 747-760 ◽  
Author(s):  
Liliana Perdomo ◽  
Xavier Vidal-Gómez ◽  
Raffaella Soleti ◽  
Luisa Vergori ◽  
Lucie Duluc ◽  
...  

Rationale: Metabolic syndrome (MetS) is a cluster of interrelated risk factors for cardiovascular diseases and atherosclerosis. Circulating levels of large extracellular vesicles (lEVs), submicrometer-sized vesicles released from plasma membrane, from MetS patients were shown to induce endothelial dysfunction, but their role in early stage of atherosclerosis and on vascular smooth muscle cells (SMC) remain to be fully elucidated. Objective: To determine the mechanisms by which lEVs lead to the progression of atherosclerosis in the setting of MetS. Methods and Results: Proteomic analysis revealed that the small GTPase, Rap1 was overexpressed in lEVs from MetS patients compared with those from non-MetS subjects. Rap1 was in GTP-associated active state in both types of lEVs, and Rap1-lEVs levels correlated with increased cardiovascular risks, including stenosis. MetS-lEVs, but not non-MetS-lEVs, increased Rap1-dependent endothelial cell permeability. MetS-lEVs significantly promoted migration and proliferation of human aortic SMC and increased expression of proinflammatory molecules and activation of ERK (extracellular signal-regulated kinase) 5/p38 pathways. Neutralization of Rap1 by specific antibody or pharmacological inhibition of Rap1 completely prevented the effects of lEVs from MetS patients. High-fat diet-fed ApoE −/− mice displayed an increased expression of Rap1 both in aortas and circulating lEVs. lEVs accumulated in plaque atherosclerotic lesions depending on the progression of atherosclerosis. lEVs from high-fat diet-fed ApoE −/− mice, but not those from mice fed with a standard diet, enhanced SMC proliferation. Human atherosclerotic lesions were enriched in lEVs expressing Rap1. Conclusions: These data demonstrate that Rap1 carried by MetS-lEVs participates in the enhanced SMC proliferation, migration, proinflammatory profile, and activation of ERK5/p38 pathways leading to vascular inflammation and remodeling, and atherosclerosis. These results highlight that Rap1 carried by MetS-lEVs may be a novel determinant of diagnostic value for cardiometabolic risk factors and suggest Rap1 as a promising therapeutic target against the development of atherosclerosis. Graphical Abstract: A graphical abstract is available for this article.


2009 ◽  
Vol 297 (3) ◽  
pp. E708-E716 ◽  
Author(s):  
Emil Egecioglu ◽  
Karolina Ploj ◽  
Xiufeng Xu ◽  
Mikael Bjursell ◽  
Nicolas Salomé ◽  
...  

To investigate the role of the central neuromedin U (NMU) signaling system in body weight and energy balance regulation, we examined the effects of long-term intracerebroventricular (icv) infusion of NMU in C57Bl/6 mice and in mice lacking the gene encoding NMU receptor 2. In diet-induced obese male and female C57BL/6 mice, icv infusion of NMU (8 μg·day−1·mouse−1) for 7 days decreased body weight and total energy intake compared with vehicle treatment. However, these parameters were unaffected by NMU treatment in lean male and female C57BL/6 mice fed a standard diet. In addition, female (but not male) NMUR2-null mice had increased body weight and body fat mass when fed a high-fat diet but lacked a clear body weight phenotype when fed a standard diet compared with wild-type littermates. Furthermore, female (but not male) NMUR2-null mice fed a high-fat diet were protected from central NMU-induced body weight loss compared with littermate wild-type mice. Thus, we provide the first evidence that long-term central NMU treatment reduces body weight, food intake, and adiposity and that central NMUR2 signaling is required for these effects in female but not male mice.


2021 ◽  
Vol 57 (3) ◽  
pp. 186
Author(s):  
Cantika Putri Melyana ◽  
Sony Wibisono Mudjanarko ◽  
Lilik Herawati ◽  
Mohammad Anam Al-Arif ◽  
Purwo Sri Rejeki

Obesity becomes a global epidemic nowadays. The high-fat diet is used as an alternative therapy for obesity. The optimal composition of a high-fat diet to reduce body weight is still unknown. This study aimed to determine which components of a high-fat diet can decrease body weight, visceral fat, and PPARG expression of visceral fat. This study was conducted at the Faculty of Veterinary Medicine, Universitas Airlangga, for three months by using a randomized post-test only control group design. Fifty male mice, 2-3 months old, 18-30 grams were adapted for one week given standard diet AIN93-M, then mice were divided into five groups, namely K1 (control group, 12% fat, 20% protein, 62% carbs); K2 (30% fat, 60% proteins, 0% carbs); K3 (45% fat, 45% protein, 0% carbs);  K4 (60% fat, 30% protein, 0% carbs); and K5 (75% fat, 15% protein, 0% carbs). Bodyweight was measured before and after treatment, then the visceral fat and PPARG expressions were evaluated. Statistical comparisons were performed using Statistical Package for the Social Sciences (SPSS) software. After treatment, there were forty-three mice. The body weight and visceral fat weight of the mice with a high-fat diet were decreased. The most significant changes in body weight were in K4 with -9,60 ± 3,806 grams reduction. The bodyweight of mice in K5, slightly increased than K2-K4. This could be caused by the hormesis phenomenon. PPARG expressions decreased in groups with a high-fat diet but increased in K5. The composition of a high-fat diet in group K4 was the most optimal to decrease the body weight, visceral fat, and PPARG expressions in mice


Sign in / Sign up

Export Citation Format

Share Document