scholarly journals Allyl Isothiocyanate Protects Acetaminophen-Induced Liver Injury via NRF2 Activation by Decreasing Spontaneous Degradation in Hepatocyte

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3585
Author(s):  
Min Woo Kim ◽  
Ju-Hee Kang ◽  
Hyun Jin Jung ◽  
Se Yong Park ◽  
Thu Han Le Phan ◽  
...  

Acetaminophen (APAP) is one of the most frequently prescribed analgesic and anti-pyretic drugs. However, APAP-induced hepatotoxicity is a major cause of acute liver failure globally. While the therapeutic dose is safe, an overdose of APAP produces an excess of the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), subsequently resulting in hepatotoxicity. Allyl isothiocyanate (AITC), a bioactive molecule in cruciferous plants, is reported to exert various biological effects, including anti-inflammatory, anti-cancer, and anti-microbial effects. Notably, AITC is known for activating nuclear factor erythroid 2-related factor 2 (NRF2), but there is limited evidence supporting the beneficial effects on hepatocytes and liver, where AITC is mainly metabolized. We applied a mouse model in the current study to investigate whether AITC protects the liver against APAP-induced injury, wherein we observed the protective effects of AITC. Furthermore, NRF2 nuclear translocation and the increase of target genes by AITC treatment were confirmed by in vitro experiments. APAP-induced cell damage was attenuated by AITC via an NRF2-dependent manner, and rapid NRF2 activation by AITC was attributed to the elevation of NRF2 stability by decreasing its spontaneous degradation. Moreover, liver tissues from our mouse experiment revealed that AITC increases the expression of heme oxygenase-1 (HO-1), an NRF2 target gene, confirming the potential of AITC as a hepatoprotective agent that induces NRF2 activation. Taken together, our results indicate the potential of AITC as a natural-product-derived NRF2 activator targeting the liver.

2021 ◽  
Author(s):  
Rui Ji ◽  
Fang-yuan Jia ◽  
Xin Chen ◽  
Ze-hao Wang ◽  
Wen-yi Jin ◽  
...  

Abstract Background: In the past few years, emerging evidence established persistent oxidative stress to be a key player in the pathogenesis of polycystic ovary syndrome (PCOS). Particularly, it damages the function of granulosa cells, and thus hinders the development of follicles. The present study aimed to explore and establish the protective effects of salidroside on dihydrotestosterone (DHT)‐induced Granulosa‐like tumor cell line (KGN), mediated via antioxidant mechanisms.Methods: KGN cells were treated with DHT as a PCOS cell model, and then incubated with salidroside in different concentrations. Apoptosis and reactive oxygen species (ROS) accumulation were assessed by flow cytometry, mitochondrial membrane potential depolarization and the nuclear translocation of Nrf2 were detected by immunofluorescence staining, and the level of apoptosis-related proteins and antioxidant proteins was assessed by western blotting.Results: Salidroside partly reversed DHT mediated effects, via stimulation of nuclear factor erythroid 2‐related factor 2 (Nrf2) signaling pathway and the downstream antioxidant proteins heme oxygenase‐1(HO‐1) and quinine oxidoreductase 1(NQO1). Additionally, knockdown of Nrf2 resulted in a deterioration in DHT‐induced oxidative stress and apoptosis. It partly moderated the protective effects of salidroside as well. Mechanistically, AMPK was identified to be the upstream signaling involved in salidroside‐induced Nrf2 activation, as silencing of AMPK partly prevented the upregulation of Nrf2 and the downstream proteins HO‐1 and NQO1. Conclusion: The present study is the first to effectively demonstrate the inhibitory effect of salidroside on DHT‐stimulated oxidative stress and apoptosis in KGN cells, which was dependent on Nrf2 activation that involved AMPK.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Hebron C. Chang ◽  
Hsin-Ling Yang ◽  
Jih-Hao Pan ◽  
Mallikarjuna Korivi ◽  
Jian-You Pan ◽  
...  

Hericium erinaceus(HE) is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926) cells upon tumor necrosis factor-α- (TNF-α-) stimulation (10 ng/mL). The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50–200 μg/mL) significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) followed by suppression of I-κB (inhibitor-κB) degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1),γ-glutamylcysteine synthetase (γ-GCLC), and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2related factor-2 (Nrf2) in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities ofH. erinaceusmay contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 398 ◽  
Author(s):  
Jung-Hwan Kim ◽  
Atif Ali Khan Khalil ◽  
Hye-Jin Kim ◽  
Sung-Eun Kim ◽  
Mi-Jeong Ahn

The nuclear factor erythroid-derived 2-related factor 2 (NRF2) is a key transcription factor for the activation of genes responsible for oxidative stress and drug detoxification. Thus, it is important to identify NRF2 activators, which can be used to protect the cells from oxidative damage. Here, we investigated the effect of juglone derivatives isolated from Reynoutria japonica on the activity of NRF2 in HeLa cells. We demonstrated that among the juglone derivatives, 2-methoxy-7-acetonyljuglone (MA) strongly stimulated the antioxidant response element (ARE)-luciferase activity in a dose-dependent manner. In addition, MA significantly increased the nuclear localization of NRF2 and, consequently, increased the expression of NRF2 target genes, including heme oxygenase-1(HO-1), NAD(P)H: quinine oxidoreductase-1 (NQO-1), and glutamate-cysteine ligase catalytic (GCLC). To gain insights into the NRF2 signaling mechanism by MA, we measured the activities of RAC-alpha serine/threonine-protein kinase (AKT) and mitogen-activated protein (MAP) kinase family proteins, including extracellular signal-regulated kinase (ERK) and p38. Our results showed that MA induced NRF2 activity through p38 and AKT signaling. Subsequently, we found that MA significantly enhanced NRF2 stability by inhibiting ubiquitin-dependent proteasomal degradation. Thus, MA might protect cells by enhancing the activity and stability of NRF2 through inhibition of the proteasomal degradation pathway.


2020 ◽  
Vol 21 (6) ◽  
pp. 2007 ◽  
Author(s):  
Young-Chang Cho ◽  
Jiyoung Park ◽  
Sayeon Cho

Various herbal extracts containing luteolin-7-O-glucuronide (L7Gn) have been traditionally used to treat inflammatory diseases. However, systemic studies aimed at elucidating the anti-inflammatory and anti-oxidative mechanisms of L7Gn in macrophages are insufficient. Herein, the anti-inflammatory and anti-oxidative effects of L7Gn and their underlying mechanisms of action in macrophages were explored. L7Gn inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase (iNOS) in a dose-dependent manner. The mRNA expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), was inhibited by L7Gn treatment. This suppression was mediated through transforming growth factor beta-activated kinase 1 (TAK1) inhibition that leads to reduced activation of nuclear factor-κB (NF-κB), p38, and c-Jun N-terminal kinase (JNK). L7Gn also enhanced the radical scavenging effect and increased the expression of anti-oxidative regulators, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1), by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activation. These results indicate that L7Gn exhibits anti-inflammatory and anti-oxidative properties in LPS-stimulated murine macrophages, suggesting that L7Gn may be a suitable candidate to treat severe inflammation and oxidative stress.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 427
Author(s):  
Enikő Balogh ◽  
Arpan Chowdhury ◽  
Haneen Ababneh ◽  
Dávid Máté Csiki ◽  
Andrea Tóth ◽  
...  

Calcific aortic valve stenosis (CAVS) is a heart disease characterized by the progressive fibro-calcific remodeling of the aortic valves, an actively regulated process with the involvement of the reactive oxygen species-mediated differentiation of valvular interstitial cells (VICs) into osteoblast-like cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of a variety of antioxidant genes, and plays a protective role in valve calcification. Heme oxygenase-1 (HO-1), an Nrf2-target gene, is upregulated in human calcified aortic valves. Therefore, we investigated the effect of Nrf2/HO-1 axis in VIC calcification. We induced osteogenic differentiation of human VICs with elevated phosphate and calcium-containing osteogenic medium (OM) in the presence of heme. Heme inhibited Ca deposition and OM-induced increase in alkaline phosphatase and osteocalcin (OCN) expression. Heme induced Nrf2 and HO-1 expression in VICs. Heme lost its anti-calcification potential when we blocked transcriptional activity Nrf2 or enzyme activity of HO-1. The heme catabolism products bilirubin, carbon monoxide, and iron, and also ferritin inhibited OM-induced Ca deposition and OCN expression in VICs. This study suggests that heme-mediated activation of the Nrf2/HO-1 pathway inhibits the calcification of VICs. The anti-calcification effect of heme is attributed to the end products of HO-1-catalyzed heme degradation and ferritin.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


2021 ◽  
Vol 11 (10) ◽  
pp. 4711
Author(s):  
Woo Jin Lee ◽  
Wan Yi Li ◽  
Sang Woo Lee ◽  
Sung Keun Jung

Until now, the physiological effects of Soroseris hirsuta were primarily unknown. Here we have evaluated the anti-inflammatory and antioxidant effects of Soroseris hirsuta extract (SHE) on lipopolysaccharide (LPS)-activated murine macrophages RAW 264.7 cells. SHE inhibited nitric oxide expression and inducible nitric oxide synthase expression in RAW 264.7 cells treated with LPS. Moreover, SHE suppressed LPS-induced phosphorylation of IκB kinase, inhibitor of kappa B, p65, p38, and c-JUN N-terminal kinase. Western blot and immunofluorescence analyses showed that SHE suppressed p65 nuclear translocation induced by LPS. Furthermore, SHE inhibited the reactive oxygen species in LPS-treated RAW 264.7 cells. SHE significantly increased heme oxygenase-1 expression and the nuclear translocation of nuclear factor erythroid 2-related factor 2. SHE suppressed LPS-induced interleukin-1β mRNA expression in RAW 264.7 cells. Thus, SHE is a promising nutraceutical as it displays anti-inflammatory and antioxidant properties.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 554
Author(s):  
Hye-Jin Park ◽  
Ha-Neul Kim ◽  
Chul Young Kim ◽  
Min-Duk Seo ◽  
Seung-Hoon Baek

Dendropanax morbifera leaves (DML) have long been used as traditional medicine to treat diverse symptoms in Korea. Ethyl acetate-soluble extracts of DML (DMLE) rescued HT22 mouse hippocampal neuronal cells from glutamate (Glu)-induced oxidative cell death; however, the protective compounds and mechanisms remain unknown. Here, we aimed to identify the neuroprotective ingredients and mechanisms of DMLE in the Glu-HT22 cell model. Five antioxidant compounds were isolated from DMLE and characterized as chlorogenic acid, hyperoside, isoquercitrin, quercetin, and rutin by spectroscopic methods. Isoquercitrin and quercetin significantly inhibited Glu-induced oxidative cell death by restoring intracellular reactive oxygen species (ROS) levels and mitochondrial superoxide generation, Ca2+ dysregulation, mitochondrial dysfunction, and nuclear translocation of apoptosis-inducing factor. These two compounds significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the presence or absence of Glu treatment. Combinatorial treatment of the five compounds based on the equivalent concentrations in DMLE showed that significant protection was found only in the cells cotreated with isoquercitrin and quercetin, both of whom showed prominent synergism, as assessed by drug–drug interaction analysis. These findings suggest that isoquercitrin and quercetin are the active principles representing the protective effects of DMLE, and these effects were mediated by the Nrf2/HO-1 pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Guosheng Lin ◽  
Dandan Luo ◽  
Jingjing Liu ◽  
Xiaoli Wu ◽  
Jinfen Chen ◽  
...  

The effect of polysaccharides isolated from Dendrobium officinale (DOP) on acetaminophen- (APAP-) induced hepatotoxicity and the underlying mechanisms involved are investigated. Male Institute of Cancer Research (ICR) mice were randomly assigned to six groups: (1) control, (2) vehicle (APAP, 230 mg/kg), (3) N-acetylcysteine (100 mg/kg), (4) 50 mg/kg DOP, (5) 100 mg/kg DOP, and (6) 200 mg/kg DOP. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the serum and glutathione (GSH), malondialdehyde (MDA), catalase (CAT), total antioxidant capacity (T-AOC), myeloperoxidase (MPO), and reactive oxygen species (ROS) levels in the liver were determined after the death of the mice. The histological examination of the liver was also performed. The effect of DOP on the Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was evaluated using Western blot analysis and real-time polymerase chain reaction (PCR). The results showed that DOP treatment significantly alleviated the hepatic injury. The decrease in ALT and AST levels in the serum and ROS, MDA, and MPO contents in the liver, as well as the increases in GSH, CAT, and T-AOC in the liver, were observed after DOP treatment. DOP treatment significantly induced the dissociation of Nrf2 from the Nrf2−Keap1 complex and promoted the Nrf2 nuclear translocation. Subsequently, DOP-mediated Nrf2 activation triggered the transcription and expressions of the glutamate–cysteine ligase catalytic (GCLC) subunit, glutamate–cysteine ligase regulatory subunit (GCLM), heme oxygenase-1 (HO-1), and NAD(P)H dehydrogenase quinone 1 (NQO1) in APAP-treated mice. The present study revealed that DOP treatment exerted potentially hepatoprotective effects against APAP-induced liver injury. Further investigation about mechanisms indicated that DOP exerted the hepatoprotective effect by suppressing the oxidative stress and activating the Nrf2−Keap1 signaling pathway.


2018 ◽  
Vol 38 (2) ◽  
pp. 247-254 ◽  
Author(s):  
WX Zhang ◽  
XY Xiao ◽  
CG Peng ◽  
WL Chen ◽  
S Xie ◽  
...  

Objective: To investigate the therapeutic effect and mechanism of sodium tanshinone IIA sulfate (STS) on paraquat (PQ)-induced myocardial injuries in a rat model. Methods: Healthy adult Sprague Dawley rats were randomly divided into normal control, PQ, and PQ + STS groups. PQ group was given a single intragastric administration of PQ (80 mg/kg). PQ + STS group was intraperitoneally injected with STS (1 ml/kg) at 30 min following PQ exposure. Rats in control and PQ groups were injected with equal amount of saline. After 12, 24, 48, and 72 h, rats were killed, and the apoptosis of myocardial cells was detected. Myocardial expression of Bax and Bcl-2 was measured. The activity of the nuclear erythroid 2-related factor 2 (Nrf2) pathway was assessed by Western blot. Results: The apoptotic cells in PQ group were significantly increased in a time-dependent manner compared with the control group ( p < 0.01). The rats in PQ group exhibited significantly lower Bcl-2 expression, but notably higher Bax expression at 12, 24, 48, and 72 h after PQ exposure ( p < 0.05 or 0.01). STS intervention markedly reduced the proportion of apoptotic myocardial cells, increased Bcl-2 expression, and decreased Bax expression at 24, 48, and 72 h after treatment ( p < 0.05 or 0.01). The expression of phosphorylated Nrf2 and heme oxygenase 1 in PQ + STS group was significantly increased compared with PQ and control groups ( p < 0.05 or 0.01). Conclusion: STS effectively inhibits PQ-induced myocardial cell apoptosis in rats via modulating the Nrf2 pathway, suggesting its potential as a promising therapeutic agent for PQ-induced myocardium damage.


Sign in / Sign up

Export Citation Format

Share Document