scholarly journals Role of Probiotics in Modulating Human Gut Microbiota Populations and Activities in Patients with Colorectal Cancer—A Systematic Review of Clinical Trials

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1160
Author(s):  
Adrianna Wierzbicka ◽  
Dorota Mańkowska-Wierzbicka ◽  
Marcin Mardas ◽  
Marta Stelmach-Mardas

Background: Growing attention has been given to the role of nutrition and alterations of microbial diversity of the gut microbiota in colorectal cancer (CRC) pathogenesis. It has been suggested that probiotics and synbiotics modulate enteric microbiota and therefore may be used as an intervention to reduce the risk of CRC. The aim of this study was to evaluate the influence of probiotics/synbiotics administration on gut microbiota in patients with CRC. Methods: PubMed, Scopus, and Web of Science were searched between December 2020 and January 2021. Randomized controlled trials (RCTs) recruiting adults with CRC, who have taken probiotics/synbiotics for at least 6 days were included. Changes in gut microbiota and selected biochemical and inflammatory parameters (i.e., hsCRP, IL-2, hemoglobin) were retrieved. Results: The search resulted in 198 original research articles and a final 6 were selected as being eligible, including 457 subjects. The median age of patients was 65.4 years old and they were characterized by the median BMI value: 23.8 kg/m2. The literature search revealed that probiotic/synbiotic administration improved enteric microbiota by increasing the abundance of beneficial bacteria such as Lactobacillus, Eubacterium, Peptostreptococcus, Bacillus and Bifidobacterium, and decreased the abundance of potentially harmful bacteria such as Fusobacterium, Porhyromonas, Pseudomonas and Enterococcus. Additionally, probiotic/synbiotic intervention improved release of antimicrobials, intestinal permeability, tight junction function in CRC patients. Conclusions: The use of probiotics/synbiotics positively modulates enteric microbiota, improves postoperative outcomes, gut barrier function and reduces inflammatory parameters in patients suffering from CRC.

2021 ◽  
Vol 17 (2) ◽  
pp. e1009253 ◽  
Author(s):  
Lei Deng ◽  
Lukasz Wojciech ◽  
Nicholas R. J. Gascoigne ◽  
Guangneng Peng ◽  
Kevin S. W. Tan

The human gut microbiota is a diverse and complex ecosystem that is involved in beneficial physiological functions as well as disease pathogenesis. Blastocystis is a common protistan parasite and is increasingly recognized as an important component of the gut microbiota. The correlations between Blastocystis and other communities of intestinal microbiota have been investigated, and, to a lesser extent, the role of this parasite in maintaining the host immunological homeostasis. Despite recent studies suggesting that Blastocystis decreases the abundance of beneficial bacteria, most reports indicate that Blastocystis is a common component of the healthy gut microbiome. This review covers recent finding on the potential interactions between Blastocystis and the gut microbiota communities and its roles in regulating host immune responses.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-13
Author(s):  
Julia Moor ◽  
Tsering Wüthrich ◽  
Suzanne Aebi ◽  
Nadezda Mostacci ◽  
Gudrun Overesch ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander Koliada ◽  
Vladislav Moseiko ◽  
Mariana Romanenko ◽  
Oleh Lushchak ◽  
Nadiia Kryzhanovska ◽  
...  

Abstract Background Evidence was previously provided for sex-related differences in the human gut microbiota composition, and sex-specific discrepancy in hormonal profiles was proposed as a main determinant of these differences. On the basis of these findings, the assumption was made on the role of microbiota in the sexual dimorphism of human diseases. To date, sex differences in fecal microbiota were demonstrated primarily at lower taxonomic levels, whereas phylum-level differences between sexes were reported in few studies only. In the present population-based cross-sectional research, sex differences in the phylum-level human gut microbiota composition were identified in a large (total n = 2301) sample of relatively healthy individuals from Ukraine. Results Relative abundances of Firmicutes and Actinobacteria, as determined by qRT-PCR, were found to be significantly increased, while that of Bacteroidetes was significantly decreased in females compared to males. The Firmicutes to Bacteroidetes (F/B) ratio was significantly increased in females compared to males. Females had 31 % higher odds of having F/B ratio more than 1 than males. This trend was evident in all age groups. The difference between sexes was even more pronounced in the elder individuals (50+): in this age group, female participants had 56 % higher odds of having F/B ratio > 1 than the male ones. Conclusions In conclusion, sex-specific differences in the phylum-level intestinal microbiota composition were observed in the Ukraine population. The F/B ratio was significantly increased in females compared to males. Further investigation is needed to draw strong conclusions regarding the mechanistic basis for sex-specific differences in the gut microbiota composition and regarding the role of these differences in the initiation and progression of human chronic diseases.


2017 ◽  
Vol 17 (2) ◽  
pp. 58-63 ◽  
Author(s):  
Chi Kit Au ◽  
Tin Lok Lai ◽  
Cheuk Wan Yim

AbstractMajority of rheumatic diseases are complex and multifactorial in etiology. Emerging studies has suggested that the change of human microbiota, especially in the gut, play a pivotal role in its pathogenesis. Dysequilibrium of the gut microbiota triggers the imbalance between pro- and anti- inflammatory immune responses and results in different rheumatic manifestations, such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). In this article, current and future role of the human gut microbiota in rheumatic diseases are discussed.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4054
Author(s):  
Yan Chen ◽  
Ying-Xuan Chen

A growing body of research has found close links between the human gut microbiota and colorectal cancer (CRC), associated with the direct actions of specific bacteria and the activities of microbiota-derived metabolites, which are implicated in complex immune responses, thus influencing carcinogenesis. Diet has a significant impact on the structure of the microbiota and also undergoes microbial metabolism. Some metabolites, such as short-chain fatty acids (SCFAs) and indole derivatives, act as protectors against cancer by regulating immune responses, while others may promote cancer. However, the specific influence of these metabolites on the host is conditional. We reviewed the recent insights on the relationships among diet, microbiota-derived metabolites, and CRC, focusing on their intricate immunomodulatory responses, which might influence the progression of colorectal cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Wanxin Liu ◽  
Ren Zhang ◽  
Rong Shu ◽  
Jinjing Yu ◽  
Huan Li ◽  
...  

A lot of previous studies have recently reported that the gut microbiota influences the development of colorectal cancer (CRC) in Western countries, but the role of the gut microbiota in Chinese population must be investigated fully. The goal of this study was to determine the role of the gut microbiome in the initiation and development of CRC. We collected fecal samples of 206 Chinese individuals: 59 with polyp (group P), 54 with adenoma (group A), 51 with colorectal cancer (group CC), and 42 healthy controls (group HC).16S ribosomal RNA (rRNA) was used to compare the microbiota community structures among healthy controls, patients with polyp, and those with adenoma or colorectal cancer. Our study proved that intestinal flora, as a specific indicator, showed significant differences in its diversity and composition. Sobs, Chao, and Ace indexes of group CC were significantly lower than those of the healthy control group (CC group: Sobs, Chao, and Ace indexes were 217.3 ± 69, 4265.1 ± 80.7, and 268.6 ± 78.1, respectively; HC group: Sobs, Chao, and Ace indexes were 228.8 ± 44.4, 272.9 ± 58.6, and 271.9 ± 57.2, respectively). When compared with the healthy individuals, the species richness and diversity of intestinal flora in patients with colorectal cancer were significantly reduced: PCA and PCoA both revealed that a significant separation in bacterial community composition between the CC group and HC group (with PCA using the first two principal component scores of PC1 14.73% and PC2 10.34% of the explained variance, respectively; PCoA : PC1 = 14%, PC2 = 9%, PC3 = 6%). Wilcox tests was used to analyze differences between the two groups, it reveals that Firmicutes (P=0.000356), Fusobacteria (P=0.000001), Proteobacteria (P=0.000796), Spirochaetes (P=0.013421), Synergistetes (P=0.005642) were phyla with significantly different distributions between cases and controls. The proportion of microorganism composition is varying at different stages of colon cancer development: Bacteroidetes (52.14%) and Firmicutes (35.88%) were enriched in the healthy individuals; on the phylum level, the abundance of Bacteroidetes (52.14%-53.92%-52.46%–47.06%) and Firmicutes (35.88%-29.73%-24.27%–25.36%) is decreasing with the development of health-polyp-adenomas-CRC, and the abundance of Proteobacteria (9.33%-12.31%-16.51%–22.37%) is increasing. PCA and PCOA analysis showed there was no significant (P<0.05) difference in species similarity between precancerous and carcinogenic states. However, the composition of the microflora in patients with precancerous lesions (including patients with adenoma and polyp) was proved to have no significant disparity (P<0.05). Our study provides insights into new angles to dig out potential biomarkers in diagnosis and treatment of colorectal cancer and to provide scientific advice for a healthy lifestyle for the sake of gut microbiota.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fanli Kong ◽  
Yi Cai

The gut microbiome in human is recognized as a “microbial organ” for its roles and contributions in regulating the human homeostasis and metabolism. Gastrointestinal (GI) cancers, especially colorectal cancer (CRC), rank as the most common cancer-related deaths worldwide. Evidences have suggested that the disorder of gut microbiota, also named as “dysbiosis,” is related to the development of a variety of diseases such as inflammatory bowel disease (IBD) and the CRC. However, detailed mechanisms between disease and gut microbiota remain largely unknown. This review introduced the correlation between gastrointestinal diseases and the microbiota in human gut from the recent studies, as well as the roles of microbiota in manipulating the CRC and IBDs development, in order to facilitate future studies and to develop novel methods for the precaution, diagnosis, or even cure of gastrointestinal diseases. Additionally, we also elucidated the possibility of probiotics in treatment against CRC.


2018 ◽  
Vol 31 (03) ◽  
pp. 192-198 ◽  
Author(s):  
Grace Chen

AbstractThere is increasing evidence that the gut microbiome, which consists of trillions of microbes representing over 1,000 species of bacteria with over 3 million genes, significantly impacts intestinal health and disease. The gut microbiota not only is capable of promoting intestinal homeostasis and antitumor responses but can also contribute to chronic dysregulated inflammation as well as have genotoxic effects that lead to carcinogenesis. Whether the gut microbiota maintains health or promotes colon cancer may ultimately depend on the composition of the gut microbiome and the balance within the microbial community of protective and detrimental bacterial populations. Disturbances in the normal balanced state of a healthful microbiome, known as dysbiosis, have been observed in patients with colorectal cancer (CRC); however, whether these alterations precede and cause CRC remains to be determined. Nonetheless, studies in mice strongly suggest that the gut microbiota can modulate susceptibility to CRC, and therefore may serve as both biomarkers and therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document