scholarly journals Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3470
Author(s):  
Taylor M. Martinez ◽  
Rachel K. Meyer ◽  
Frank A. Duca

Obesity is due in part to increased consumption of a Western diet that is low in dietary fiber. Conversely, an increase in fiber supplementation to a diet can have various beneficial effects on metabolic homeostasis including weight loss and reduced adiposity. Fibers are extremely diverse in source and composition, such as high-amylose maize, β-glucan, wheat fiber, pectin, inulin-type fructans, and soluble corn fiber. Despite the heterogeneity of dietary fiber, most have been shown to play a role in alleviating obesity-related health issues, mainly by targeting and utilizing the properties of the gut microbiome. Reductions in body weight, adiposity, food intake, and markers of inflammation have all been reported with the consumption of various fibers, making them a promising treatment option for the obesity epidemic. This review will highlight the current findings on different plant-based fibers as a therapeutic dietary supplement to improve energy homeostasis via mechanisms of gut microbiota.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoon Ok Jang ◽  
Ock-Hwa Kim ◽  
Su Jung Kim ◽  
Se Hee Lee ◽  
Sunmi Yun ◽  
...  

AbstractDietary fiber functions as a prebiotic to determine the gut microbe composition. The gut microbiota influences the metabolic functions and immune responses in human health. The gut microbiota and metabolites produced by various dietary components not only modulate immunity but also impact various organs. Although recent findings have suggested that microbial dysbiosis is associated with several respiratory diseases, including asthma, cystic fibrosis, and allergy, the role of microbiota and metabolites produced by dietary nutrients with respect to pulmonary disease remains unclear. Therefore, we explored whether the gut microbiota and metabolites produced by dietary fiber components could influence a cigarette smoking (CS)-exposed emphysema model. In this study, it was demonstrated that a high-fiber diet including non-fermentable cellulose and fermentable pectin attenuated the pathological changes associated with emphysema progression and the inflammatory response in CS-exposed emphysema mice. Moreover, we observed that different types of dietary fiber could modulate the diversity of gut microbiota and differentially impacted anabolism including the generation of short-chain fatty acids, bile acids, and sphingolipids. Overall, the results of this study indicate that high-fiber diets play a beneficial role in the gut microbiota-metabolite modulation and substantially affect CS-exposed emphysema mice. Furthermore, this study suggests the therapeutic potential of gut microbiota and metabolites from a high-fiber diet in emphysema via local and systemic inflammation inhibition, which may be useful in the development of a new COPD treatment plan.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1651 ◽  
Author(s):  
Alice Chaplin ◽  
Christian Carpéné ◽  
Josep Mercader

Resveratrol is a polyphenol which has been shown to have beneficial effects on metabolic syndrome-related alterations in experimental animals, including glucose and lipid homeostasis improvement and a reduction in fat mass, blood pressure, low-grade inflammation, and oxidative stress. Clinical trials have been carried out to address its potential; however, results are still inconclusive. Even though resveratrol is partly metabolized by gut microbiota, the relevance of this “forgotten organ” had not been widely considered. However, in the past few years, data has emerged suggesting that the therapeutic potential of this compound may be due to its interaction with gut microbiota, reporting changes in bacterial composition associated with beneficial metabolic outcomes. Even though data is still scarce and for the most part observational, it is promising nevertheless, suggesting that resveratrol supplementation could be a useful tool for the treatment of metabolic syndrome and its associated conditions.


2019 ◽  
Vol 11 (518) ◽  
pp. eaau4760 ◽  
Author(s):  
Parag Kundu ◽  
Hae Ung Lee ◽  
Isabel Garcia-Perez ◽  
Emmy Xue Yun Tay ◽  
Hyejin Kim ◽  
...  

The gut microbiota evolves as the host ages, yet the effects of these microbial changes on host physiology and energy homeostasis are poorly understood. To investigate these potential effects, we transplanted the gut microbiota of old or young mice into young germ-free recipient mice. Both groups showed similar weight gain and skeletal muscle mass, but germ-free mice receiving a gut microbiota transplant from old donor mice unexpectedly showed increased neurogenesis in the hippocampus of the brain and increased intestinal growth. Metagenomic analysis revealed age-sensitive enrichment in butyrate-producing microbes in young germ-free mice transplanted with the gut microbiota of old donor mice. The higher concentration of gut microbiota–derived butyrate in these young transplanted mice was associated with an increase in the pleiotropic and prolongevity hormone fibroblast growth factor 21 (FGF21). An increase in FGF21 correlated with increased AMPK and SIRT-1 activation and reduced mTOR signaling. Young germ-free mice treated with exogenous sodium butyrate recapitulated the prolongevity phenotype observed in young germ-free mice receiving a gut microbiota transplant from old donor mice. These results suggest that gut microbiota transplants from aged hosts conferred beneficial effects in responsive young recipients.


2017 ◽  
Vol 8 (5) ◽  
pp. 823-831 ◽  
Author(s):  
R. Crescenzo ◽  
A. Mazzoli ◽  
R. Cancelliere ◽  
A. Bucci ◽  
G. Naclerio ◽  
...  

A well-established rat model of diet-induced metabolic syndrome was used to evaluate the effects of the oral administration of spores or cells of HU16, a carotenoid-producing strain of Bacillus indicus. Symptoms of metabolic syndrome were induced in 90-days old, male Sprague-Dawley rats maintained for eight weeks on a high-fat diet, as previously reported. Parallel groups of animals under the same diet regimen also received a daily dose of 1×1010 cells or spores of B. indicus HU16. Cells of strain HU16 were able to reduce symptoms of metabolic syndrome, plasma markers of inflammation and oxidative markers in plasma and liver to levels similar to those observed in rats under a standard diet. HU16 cells did not affect obesity markers or the accumulation of triglycerides in the liver of treated animals. Denaturing gradient gel electrophoresis analysis showed that the oral administration of HU16 cells did not significantly affect the gut microbiota of high fat-fed rats, suggesting that the observed beneficial effects are not due to a reshaping of the gut microbiota but rather to metabolites produced by HU16 cells.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 415
Author(s):  
Andrea Ballini ◽  
Salvatore Scacco ◽  
Mariarosaria Boccellino ◽  
Luigi Santacroce ◽  
Roberto Arrigoni

Genetic and environmental factors are underlying causes of obesity and other metabolic diseases, so it is therefore difficult to find suitable and effective medical treatments. However, without a doubt, the gut microbiota—and also the bacteria present in the oral cavity—act as key factors in the development of these pathologies, yet the mechanisms have not been fully described. Certainly, a more detailed knowledge of the structure of the microbiota—composition, intra- and inter-species relationships, metabolic functions—could be of great help in counteracting the onset of obesity. Identifying key bacterial species will allow us to create a database of “healthy” bacteria, making it possible to manipulate the bacterial community according to metabolic and clinical needs. Targeting gut microbiota in clinical care as treatment for obesity and health-related complications—even just for weight loss has become a real possibility. In this topical review we provide an overview of the role of the microbiota on host energy homeostasis and obesity-related metabolic diseases, therefore addressing the therapeutic potential of novel and existing strategies (impact of nutrition/dietary modulation, and fecal microbiota transplantation) in the treatment of metabolic disease.


2020 ◽  
Author(s):  
Y Liu ◽  
AL Heath ◽  
B Galland ◽  
N Rehrer ◽  
L Drummond ◽  
...  

© 2020 American Society for Microbiology. Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula. Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology. This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Sign in / Sign up

Export Citation Format

Share Document