scholarly journals Antimicrobial Effects of Inula viscosa Extract on the In Situ Initial Oral Biofilm

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4029
Author(s):  
Hannah Kurz ◽  
Lamprini Karygianni ◽  
Aikaterini Argyropoulou ◽  
Elmar Hellwig ◽  
Alexios Leandros Skaltsounis ◽  
...  

Given the undesirable side effects of commercially used mouth rinses that include chemically synthesized antimicrobial compounds such as chlorhexidine, it is essential to discover novel antimicrobial substances based on plant extracts. The aim of this study was to examine the antimicrobial effect of Inula viscosa extract on the initial microbial adhesion in the oral cavity. Individual test splints were manufactured for the participants, on which disinfected bovine enamel samples were attached. After the initial microbial adhesion, the biofilm-covered oral samples were removed and treated with different concentrations (10, 20, and 30 mg/mL) of an I. viscosa extract for 10 min. Positive and negative controls were also sampled. Regarding the microbiological parameters, the colony-forming units (CFU) and vitality testing (live/dead staining) were examined in combination with fluorescence microscopy. An I. viscosa extract with a concentration of 30 mg/mL killed the bacteria of the initial adhesion at a rate of 99.99% (log10 CFU value of 1.837 ± 1.54). Compared to the negative control, no killing effects were determined after treatment with I. viscosa extract at concentrations of 10 mg/mL (log10 CFU value 3.776 ± 0.831; median 3.776) and 20 mg/mL (log10 CFU value 3.725 ± 0.300; median 3.711). The live/dead staining revealed a significant reduction (p < 0.0001) of vital adherent bacteria after treatment with 10 mg/mL of I. viscosa extract. After treatment with an I. viscosa extract with a concentration of 30 mg/mL, no vital bacteria could be detected. For the first time, significant antimicrobial effects on the initial microbial adhesion in in situ oral biofilms were reported for an I. viscosa extract.

2021 ◽  
Vol 9 (1) ◽  
pp. 145
Author(s):  
Lamprini Karygianni ◽  
Sandra Ruf ◽  
Elmar Hellwig ◽  
Marie Follo ◽  
Kirstin Vach ◽  
...  

The aim of this study was to examine the effect of aPDT with visual light (VIS) + water-filtered infrared A (wIRA) as a light source, and tetrahydroporphyrin-tetratosylate (THPTS) as a photosensitizer on in situ initial and mature oral biofilms. The samples were incubated, ex situ, with THPTS for two minutes, followed by irradiation with 200 mW cm − 2 VIS + wIRA for five minutes at 37 °C. The adherent microorganisms were quantified, and the biofilm samples were visualized using live/dead staining and confocal laser scanning microscopy (CLSM). The THPTS-mediated aPDT resulted in significant decreases in both the initially adherent microorganisms and the microorganisms in the mature oral biofilms, in comparison to the untreated control samples (>99.99% each; p = 0.018 and p = 0.0066, respectively). The remaining vital bacteria significantly decreased in the aPDT-treated biofilms during initial adhesion (vitality rate 9.4% vs. 71.2% untreated control, 17.28% CHX). Of the mature biofilms, 25.67% remained vital after aPDT treatment (81.97% untreated control, 16.44% CHX). High permeability of THPTS into deep layers could be shown. The present results indicate that the microbial reduction in oral initial and mature oral biofilms resulting from aPDT with VIS + wIRA in combination with THPTS has significant potential for the treatment of oral biofilm-associated diseases.


2007 ◽  
Vol 18 (3) ◽  
pp. 185-191 ◽  
Author(s):  
Rodrigo Alex Arthur ◽  
Cínthia Pereira Machado Tabchoury ◽  
Renata de Oliveira Mattos-Graner ◽  
Altair A. Del Bel Cury ◽  
Adriana Franco Paes Leme ◽  
...  

In situ dental biofilm composition under sugar exposure is well known, but sugar effect on the genotypic diversity of S. mutans in dental biofilm has not been explored. This study evaluated S. mutans genotypic diversity in dental biofilm formed in situ under frequent exposure to sucrose and its monosaccharide constituents (glucose and fructose). Saliva of 7 volunteers was collected for isolation of S. mutans and the same volunteers wore intraoral palatal appliances, containing enamel slabs, which were submitted to the following treatments: distilled and deionized water (negative control), 10% glucose + 10% fructose (fermentable carbohydrates) solution or 20% sucrose (fermentable and EPS inductor) solution, 8x/day. After 3, 7 and 14 days, the biofilms were colleted and S. mutans colonies were isolated. Arbitrarily primed polymerase chain reaction (AP-PCR) of S. mutans showed that salivary genotypes were also detected in almost all biofilm samples, independently of the treatment, and seemed to reflect those genotypes present at higher proportion in biofilms. In addition to the salivary genotypes, others were found in biofilms but in lower proportions and were distinct among treatment. The data suggest that the in situ model seems to be useful to evaluate genotypic diversity of S. mutans, but, under the tested conditions, it was not possible to clearly show that specific genotypes were selected in the biofilm due to the stress induced by sucrose metabolism or simple fermentation of its monosaccharides.


2015 ◽  
Vol 28 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ana Gomes ◽  
Benedita Sampaio-Maia ◽  
Mario Vasconcelos ◽  
Patricia Fonseca ◽  
M Figueiral

2001 ◽  
Vol 7 (3) ◽  
pp. 245-250 ◽  
Author(s):  
O. Erkmen

Antimicrobial effect of 15, 30 and 60 atm CO 2 pressures was studied on Yersinia enterocolitica at 25, 35 and 45 °C. Two stages were observed in the destruction curves. The earlier stage was characterized by a slow rate of inactivation in number of Y. enterocolitica, which increased sharply at the later stage. An increase of pressure and/or temperature enhanced the antimicrobial effects of CO 2. The D values of 6.1 and 4.9 min were obtained for Y. enterocolitica at 45 °C under 15 and 30 atm CO 2 pressure, respectively, while only 1.3 min D value was found at 60 atm. A rapid and significant ( p < 0.05) reduction was obtained in the number of Y. enterocolitica at treated pressures and temperatures. Pressure, temperature, exposure time, and the suspending medium influenced the inactivation rates of Y. enterocolitica.


2015 ◽  
Vol 10 (3) ◽  
pp. 529 ◽  
Author(s):  
Huawei Zhang ◽  
Chuanfeng Ruan ◽  
Xuelian Bai

<p>Ten fungal strains isolated from <em>Edgeworthia chrysantha</em>, one of traditional medicinal plants in China, were evaluated their antimicrobial activities against three human pathogens, <em>Escherichia coli, Staphyloccocus aureus and Candida albicans</em>, and two phytopathogens, <em>Rhizoctonia cerealis</em> and <em>Colletotrichum gloeosporioides</em>. The results indicated that most ethyl acetate extracts of fermentation broth of these fungal endophytes had stronger antimicrobial activities than their fermentation broth. Among these endophytic strains, both fermentation broth and the ethyl acetate extract of strain D showed the strongest inhibitory effects on all pathogens. Strains 5-19 and BZ also exhibited potent antibacterial activities. However, other strains had weak or no antimicrobial effect. This was the first report on the isolation and antimicrobial effects of endophytic fungi from <em>E. chrysantha</em>.   </p><p> </p>


2022 ◽  
Vol 23 (1) ◽  
pp. 524
Author(s):  
Sergey V. Kravchenko ◽  
Pavel A. Domnin ◽  
Sergei Y. Grishin ◽  
Alexander V. Panfilov ◽  
Viacheslav N. Azev ◽  
...  

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.


1986 ◽  
Vol 86 (1) ◽  
pp. 35-45
Author(s):  
M. Ukil ◽  
K. Chatterjee ◽  
A. Dey ◽  
S. Ghosh ◽  
A.S. Mukherjee

Cytophotometric analysis of the in situ binding affinity of non-histone chromosomal protein (NHCP) to the polytenic X chromosome and autosome of Drosophila melanogaster has been carried out using Feulgen-Napthol Yellow S staining technique. The results reveal that the mean transformed absorbance ratio (male:female) with a 547 nm interference band filter for the two specific segments of the X chromosome is close to 0.5, while for a specific segment of an autosome it is close to 1.0, in the two sets of control; namely, the positive control (no treatment) and the negative control (treated with 1 M-urea+2M-NaCl) as well as in the reconstituted chromosomal preparations, which received 1 M-urea+2M-NaCl and the NHCP isolated from D. melanogaster. In contrast, the transformed absorbance ratios (male:female) with a 433 nm interference band filter yielded an interestingly different result. The ratios with a 433 nm filter for the X chromosome segments are significantly greater than 0.5 in all three sets of experiments. This finding by itself suggests that the NHCP binding affinity is dissimilar for the X chromosomes of male and female. When the 433 to 547 nm absorbance ratios were compared among the three sets, the data clearly revealed that in both positive control and NHCP reconstituted samples, the absorbance ratios (i.e. 433:547 nm) are significantly different between X chromosomes from males and those from females, while they are different between autosomes from males and females. The ratios are also not significantly different between male and female, either for the X chromosome or for the autosome in the negative control. These findings, therefore, suggest that there is a stronger binding affinity of NHCP for the male X chromosome of Drosophila, and reinstate the view that the X-chromosomal hyperactivity in male Drosophila is the consequence of a regulated organizational change in the DNA template.


2019 ◽  
Vol 43 (6) ◽  
pp. 398-407
Author(s):  
Eman Abu-obaid ◽  
Fouad Salama ◽  
Ala’a Abu-obaid ◽  
Fars Alanazi ◽  
Mounir Salem ◽  
...  

Purpose: To assess the antimicrobial effects of different natural and semi-natural mouthrinses on isolates of S. mutans obtained from the saliva of Saudi children and reference strains of S mutans (ATCC 25175). Study design: Saliva samples were collected from 20 children. Natural and semi-natural mouthrinses included were herbal mix mouthrinse, cranberry mouthrinse, chlorhexidine digluconate mouthrinse, cranberry extract mixed with chlorhexidine digluconate mouthrinse, chlorhexidine digluconate mouthrinse with alcohol (positive control), and distilled water (negative control). The microbiological examination tests were minimal inhibitory concentration, minimal bactericidal concentration, and zone of inhibition for the saliva isolates of S. mutans while zone of inhibition test only for reference strain of S. mutans. Results: For reference strain in a comparison with the distilled water, the herbal mix, cranberry, cranberry mixed with chlorhexidine, chlorhexidine, and chlorhexidine with alcohol showed significantly increased zones of inhibition by 36.38, 36.25, 26.13, 17.75, and 12.38, respectively. For saliva isolates in a comparison with the distilled water, the herbal mix, cranberry, cranberry mixed with chlorhexidine, chlorhexidine, and chlorhexidine with alcohol showed significantly increased zones of inhibition by 38.00, 34.25, 22.94, 16.50, and 16.44, respectively. Chlorhexidine with alcohol showed significantly lower minimum inhibitory and bactericidal concentration than the other groups. Conclusions: Herbal mix and cranberry mouthrinses could be effective natural alternative to chlorhexidine mouthrinse with or without alcohol in affecting tested parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Francisco Wilker Mustafa Gomes Muniz ◽  
Juliano Cavagni ◽  
Gerson Pedro José Langa ◽  
Bernal Stewart ◽  
Zilson Malheiros ◽  
...  

Background. Hydrogen peroxide (H2O2) has been used for more than a century clinically to control plaque and gingival inflammation, with unclear supporting evidence. Aim. The aim of the present systematic review of the literature is to assess the effect of mouth rinses with H2O2 on dental plaque, gingival inflammation, and oral microorganisms. Methods. Five databases (PubMed, Scopus, Embase, Cochrane Library, and Web of Science) were searched with the following focused question: what is the effect of hydrogen peroxide, in comparison to chlorhexidine or to a placebo solution, in oral microbiota control, dental plaque, and gingival inflammatory outcomes? Two independent examiners retrieved the articles and evaluated the evidence. Results. The majority of included studies were performed with 1.5% H2O2. Results related to plaque accumulation generally demonstrate a slightly better effect of H2O2 as compared to placebo mouth rinses, however with a lower performance as compared to chlorhexidine. In terms of gingival inflammation, H2O2 performs better than placebo and more clearly demonstrates an anti-inflammation effect. No studies evaluated the effect of H2O2 against viruses or fungi. In terms of bacteria, H2O2 demonstrates an antibacterial effect. Conclusion. Rinsing with H2O2 has the potential to affect plaque, gingivitis, and oral bacteria, as compared to placebo. However, the antibacterial results are not comparable to the performance of chlorhexidine.


2004 ◽  
Vol 449-452 ◽  
pp. 1233-1236 ◽  
Author(s):  
Kyung Sik Oh ◽  
Sang Hoon Park ◽  
Young Keun Jeong

Ag doped Hydroxyapatites (Ag-HAp) was prepared through either ion exchange or coprecipitation to compare the durability of antimicrobial effect. In case of ion exchanged Ag-HAp, the microbials reproliferated after 100 h, in spite of the rapid reduction of E.Coli during the initial moment. On the contrary, coprecipitated Ag-HAp effectively suppressed the reproliferation until 1000 h. The difference in durability depending on synthesis route was analysed with respect to the amount of silver released at each interval. In case of ion exchanged Ag-HAp, more than 60% of overall silver was released during initial 10 minitues. On the contrary, coprecipitated Ag-HAp released less than 40% of overall silver during the same period, meaning the comparatively uniform release behavior.


Sign in / Sign up

Export Citation Format

Share Document