scholarly journals Fatty Acid Metabolism and Derived-Mediators Distinctive of PPAR-α Activation in Obese Subjects Post Bariatric Surgery

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4340
Author(s):  
Claudia Manca ◽  
Stefano Pintus ◽  
Elisabetta Murru ◽  
Giovanni Fantola ◽  
Michela Vincis ◽  
...  

Bariatric surger (BS) is characterized by lipid metabolic changes as a response to the massive release of non-esterified fatty acids (NEFA) from adipose depots. The study aimed at evaluating changes in polyunsaturated fatty acids (PUFA) metabolism and biosynthesis of the lipid mediators N-acylethanolamines (NAE), as indices of nuclear peroxisome proliferator-activated receptor (PPAR)-α activation. The observational study was performed on 35 subjects (27 female, 8 male) with obesity, undergoing bariatric surgery. We assessed plasma FA and NAE profiles by LC-MS/MS, clinical parameters and anthropometric measures before and 1 and 6 months after bariatric surgery. One month after bariatric surgery, as body weight and clinical parameters improved significantly, we found higher plasma levels of N-oleoylethanolamine, arachidonic and a 22:6-n3/20:5-n3 ratio as evidence of PPAR-α activation. These changes corresponded to higher circulating levels of NEFA and a steep reduction of the fat mass. After 6 months 22:6-n3/20:5-n3 remained elevated and fat mass was further reduced. Our data suggest that the massive release of NEFA from adipose tissue at 1-Post, possibly by inducing PPAR-α, may enhance FA metabolism contributing to fat depot reduction and improved metabolic parameters in the early stage. However, PUFA metabolic changes favor n6 PUFA biosynthesis, requiring a nutritional strategy aimed at reducing the n6/n3 PUFA ratio.

2017 ◽  
Vol 312 (5) ◽  
pp. E394-E406 ◽  
Author(s):  
Samuel Lee ◽  
Teresa C. Leone ◽  
Lisa Rogosa ◽  
John Rumsey ◽  
Julio Ayala ◽  
...  

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Weimin He

The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPAR) is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPAR have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPAR, Pro12Ala of PPAR2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPAR2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPAR2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPAR2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies.


2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Huibin Tian ◽  
Jun Luo ◽  
Hengbo Shi ◽  
Xiaoying Chen ◽  
Jiao Wu ◽  
...  

Abstract A key member of the nuclear receptor superfamily is the peroxisome proliferator-activated receptor alpha (PPARA) isoform, which in nonruminants is closely associated with fatty acid oxidation. Whether PPARA plays a role in milk fatty acid synthesis in ruminants is unknown. The main objective of the present study was to use primary goat mammary epithelial cells (GMEC) to activate PPARA via the agonist WY-14643 (WY) or to silence it via transfection of small-interfering RNA (siRNA). Three copies of the peroxisome proliferator-activated receptor response element (PPRE) contained in a luciferase reporter vector were transfected into GMEC followed by incubation with WY at 0, 10, 20, 30, 50, or 100 µM. A dose of 50 µM WY was most effective at activating PPRE without influencing PPARA mRNA abundance. Transfecting siRNA targeting PPARA decreased its mRNA abundance to 20% and protein level to 50% of basal levels. Use of WY upregulated FASN, SCD1, ACSL1, DGAT1, FABP4, and CD36 (1.1-, 1.5-, 2-, 1.4-, 1.5-, and 5-fold, respectively), but downregulated DGAT2 and PGC1A (−20% and −40%, respectively) abundance. In contrast, triacylglycerol concentration decreased and the content and desaturation index of C16:1 and C18:1 increased. Thus, activation of PPARA via WY appeared to channel fatty acids away from esterification. Knockdown of PPARA via siRNA downregulated ACACA, SCD1, AGPAT6, CD36, HSL, and SREBF1 (−43%, −67%, −16%, −56%, −26%, and −29%, respectively), but upregulated ACSL1, DGAT2, FABP3, and PGC1A (2-, 1.4-, 1.3-, and 2.5-fold, respectively) mRNA abundance. A decrease in the content and desaturation index of C16:1 and C18:1 coupled with an increase in triacylglycerol content accompanied those effects at the mRNA level. Overall, data suggest that PPARA could promote the synthesis of MUFA in GMEC through its effects on mRNA abundance of genes related to fatty acid synthesis, oxidation, transport, and triacylglycerol synthesis.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2851
Author(s):  
Papawee Saiki ◽  
Yasuhiro Kawano ◽  
Takayuki Ogi ◽  
Prapaipat Klungsupya ◽  
Thanchanok Muangman ◽  
...  

Gymnema inodorum (GI) is an indigenous medicinal plant and functional food in Thailand that has recently helped to reduce plasma glucose levels in healthy humans. It is renowned for the medicinal properties of gymnemic acid and its ability to suppress glucose absorption. However, the effects of gymnemic acids on adipogenesis that contribute to the accumulation of adipose tissues associated with obesity remain unknown. The present study aimed to determine the effects of gymnemic acids derived from GI tea on adipogenesis. We purified and identified GiA-7 and stephanosides C and B from GI tea that inhibited adipocyte differentiation in 3T3-L1 cells. These compounds also suppressed the expression of peroxisome proliferator-activated receptor gamma (Pparγ)-dependent genes, indicating that they inhibit lipid accumulation and the early stage of 3T3-L1 preadipocyte differentiation. Only GiA-7 induced the expression of uncoupling protein 1 (Ucp1) and pparγ coactivator 1 alpha (Pgc1α), suggesting that GiA-7 induces mitochondrial activity and beige-like adipocytes. This is the first finding of stephanosides C and B in Gymnema inodorum. Our results suggested that GiA-7 and stephanosides C and B from GI tea could help to prevent obesity.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1259 ◽  
Author(s):  
Garima Maheshwari ◽  
Robert Ringseis ◽  
Gaiping Wen ◽  
Denise K. Gessner ◽  
Johanna Rost ◽  
...  

The study aimed to test the hypothesis that monomethyl branched-chain fatty acids (BCFAs) and a lipid extract of Conidiobolus heterosporus (CHLE), rich in monomethyl BCFAs, are able to activate the nuclear transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha). Rat Fao cells were incubated with the monomethyl BCFAs 12-methyltridecanoic acid (MTriA), 12-methyltetradecanoic acid (MTA), isopalmitic acid (IPA) and 14-methylhexadecanoic acid (MHD), and the direct activation of PPARalpha was evaluated by reporter gene assay using a PPARalpha responsive reporter gene. Furthermore, Fao cells were incubated with different concentrations of the CHLE and PPARalpha activation was also evaluated by using the reporter gene assay, and by determining the mRNA concentrations of selected PPARalpha target genes by real-time RT-PCR. The reporter gene assay revealed that IPA and the CHLE, but not MTriA, MHD and MTA, activate the PPARalpha responsive reporter gene. CHLE dose-dependently increased mRNA concentrations of the PPARalpha target genes acyl-CoA oxidase (ACOX1), cytochrome P450 4A1 (CYP4A1), carnitine palmitoyltransferase 1A (CPT1A) and solute carrier family 22 (organic cation/carnitine transporter), member 5 (SLC22A5). In conclusion, the monomethyl BCFA IPA is a potent PPARalpha activator. CHLE activates PPARalpha-dependent gene expression in Fao cells, an effect that is possibly mediated by IPA.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Pieter de Lange ◽  
Assunta Lombardi ◽  
Elena Silvestri ◽  
Fernando Goglia ◽  
Antonia Lanni ◽  
...  

The peroxisome proliferator-activated receptors (PPARs), which are ligand-inducible transcription factors expressed in a variety of tissues, have been shown to perform key roles in lipid homeostasis. In physiological situations such as fasting and physical exercise, one PPAR subtype, PPARδ, triggers a transcriptional program in skeletal muscle leading to a switch in fuel usage from glucose/fatty acids to solely fatty acids, thereby drastically increasing its oxidative capacity. The metabolic action of PPARδ has also been verified in humans. In addition, it has become clear that the action of PPARδ is not restricted to skeletal muscle. Indeed, PPARδ has been shown to play a crucial role in whole-body lipid homeostasis as well as in insulin sensitivity, and it is active not only in skeletal muscle (as an activator of fat burning) but also in the liver (where it can activate glycolysis/lipogenesis, with the produced fat being oxidized in muscle) and in the adipose tissue (by incrementing lipolysis). The main aim of this review is to highlight the central role for activated PPARδ in the reversal of any tendency toward the development of insulin resistance.


2008 ◽  
Vol 56 (2) ◽  
pp. 522-527 ◽  
Author(s):  
Raju C. Reddy

The lung is constantly exposed to inhaled pathogens and toxins yet totally dependent on the integrity of a delicate alveolar-capillary interface for its function. Much of the balance between protection and collateral damage rests on the alveolar macrophage, which not only phagocytoses inhaled particles but also modulates the activity of both innate and acquired immune systems to limit unnecessary or exuberant inflammation. In its resting state, the alveolar macrophage secretes anti-inflammatory mediators while limiting antigen presentation to the adaptive immune system. The alveolar macrophage's state of activation is regulated by a variety of factors, including the activity of the nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ). Peroxisome proliferator-activated receptor γ agonists reduce the ability of inflammatory stimuli to activate the alveolar macrophage while simultaneously stimulating phagocytosis of both opsonized and unopsonized particles, via the Fcγ and CD36 receptors, respectively. All known endogenous PPAR-γ ligands are fatty acid derivatives, and macrophage-specific knockout of the enzyme that converts esterified fatty acids to free fatty acids results in severe lung inflammation. Peroxisome proliferator-activated receptor γ expression is reduced in alveolar macrophages from patients with pulmonary sarcoidosis and alveolar proteinosis, suggesting that the deficiency may play a role in pathogenesis of these diseases. In summary, these observations point to PPAR-γ in the context of the alveolar macrophage as a crucial factor in limiting excessive and possibly injurious inflammation in the lung.


2002 ◽  
Vol 364 (2) ◽  
pp. 361-368 ◽  
Author(s):  
Mary C. SUGDEN ◽  
Karen BULMER ◽  
Geoffrey F. GIBBONS ◽  
Brian L. KNIGHT ◽  
Mark J. HOLNESS

The aim of the present study was to determine whether peroxisome-proliferator-activated receptor-α (PPARα) deficiency disrupts the normal regulation of triacylglycerol (TAG) accumulation, hepatic lipogenesis and glycogenesis by fatty acids and insulin using PPARα-null mice. In wild-type mice, hepatic TAG concentrations increased (P<0.01) with fasting (24h), with substantial reversal after refeeding (6h). Hepatic TAG levels in fed PPARα-null mice were 2.4-fold higher than in the wild-type (P<0.05), increased with fasting, but remained elevated after refeeding. PPARα deficiency also impaired hepatic glycogen repletion (P<0.001), despite normal insulin and glucose levels after refeeding. Higher levels of plasma insulin were required to support similar levels of hepatic lipogenesis de novo (3H2O incorporation) in the PPARα-null mice compared with the wild-type. This difference was reflected by corresponding changes in the relationship between plasma insulin and the mRNA expression of the lipogenic transcription factor sterol-regulatory-element-binding protein-1c, and that of one of its known targets, fatty acid synthase. In wild-type mice, hepatic pyruvate dehydrogenase kinase (PDK) 4 protein expression (a downstream marker of altered fatty acid catabolism) increased (P<0.01) in response to fasting, with suppression (P<0.001) by refeeding. Although PDK4 up-regulation after fasting was halved by PPARα deficiency, PDK4 suppression after refeeding was attenuated. In summary, PPARα deficiency leads to accumulation of hepatic TAG and elicits dysregulation of hepatic lipid and carbohydrate metabolism, emphasizing the importance of precise control of lipid oxidation for hepatic fuel homoeostasis.


Sign in / Sign up

Export Citation Format

Share Document