scholarly journals Reduced Antioxidant Response of the Fan Mussel Pinna nobilis Related to the Presence of Haplosporidium pinnae

Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 932
Author(s):  
Antonio Box ◽  
Xavier Capó ◽  
Silvia Tejada ◽  
Gaetano Catanese ◽  
Amalia Grau ◽  
...  

The endemic fan mussel (Pinna nobilis) in the Mediterranean Sea is at high risk of disappearance due to massive mortality events. The aim of the study was to evaluate the antioxidant response of P. nobilis collected in the Balearic Islands (Western Mediterranean) before and after the mass mortality event. Individuals collected before (between 2011 and 2012) and after (between 2016 and 2017) the event were analyzed by histological, molecular, and biochemical methods to compare pathogenic loads and biochemical responses. All the individuals collected during 2016–2017 presented symptoms of the disease and were positive for Haplosporidium pinnae, while acid-fast bacteria or/and Gram-negative bacteria were detected in some individuals of both sampling periods. The activities of the antioxidant enzymes catalase and superoxide dismutase in the gills were significantly lower in P. nobilis affected with the parasite compared to those in the asymptomatic ones, while levels of malondialdehyde, as an indicator of lipid peroxidation, were higher in infected individuals. When analyzing the differential effects of H. pinnae and Mycobacterium sp. on P. nobilis, it was observed that significant effects on biomarkers were only observed in the presence of H. pinnae. Co-infection of P. nobilis by H. pinnae with other pathogens such as Mycobacterium sp. constitutes a serious problem due to its high mortality rate in the Balearic Island waters. This concerning situation for P. nobilis is favored by a reduction in antioxidant defenses related to H. pinnae infection that induces oxidative stress and cell damage.

2017 ◽  
Vol 4 ◽  
Author(s):  
Maite Vázquez-Luis ◽  
Elvira Álvarez ◽  
Agustín Barrajón ◽  
José R. García-March ◽  
Amalia Grau ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 842 ◽  
Author(s):  
Lingling Sun ◽  
Fang Wang ◽  
Zhaohai Wu ◽  
Lu Ma ◽  
Craig Baumrucker ◽  
...  

Oxidative stress can cause cell damage. Hydroxy-selenomethionine (HMSeBA) is an organic Se source with emerging antioxidant advantages. The objective of this study was to compare the effects of HMSeBA, selenomethionine (SeMet) and sodium selenite (SS) on the antioxidant response and the ability to resist oxidative stress in bovine mammary epithelial cells (BMEC). The BMEC were treated with 0 (Control), 20, 50, 100 and 150 nM HMSeBA, 100 nM SeMet and100 nM SS for 48 h. The results showed that HMSeBA and SeMet treatments had higher glutathione peroxidase (p < 0.01) and catalase (p = 0.01) activities and mRNA abundance of GPX3 (p = 0.02), but lower superoxide dismutase activity compared with SS (p = 0.04). The catalase activity (p < 0.05) and mRNA abundance of GPX3 (p = 0.04) changed in a quadratic manner with the increase of HMSeBA levels. To assess the potential protection of different Se sources against oxidative stress on BMEC, 0 or 50 μM H2O2 was added to BMEC culture for 3 h after Se pre-treatment for 48 h. The results showed that HMSeBA and SeMet, which did not differ (p > 0.05), but further decreased malondialdehyde and reactive oxygen species production compared with SS (p < 0.05). In conclusion, HMSeBA showed an enhanced cellular antioxidant status to resist oxidative damage induced by H2O2 when compared with SS, whereas the effects were similar to SeMet.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Miguel Cabanellas-Reboredo ◽  
Maite Vázquez-Luis ◽  
Baptiste Mourre ◽  
Elvira Álvarez ◽  
Salud Deudero ◽  
...  

Abstract A mass mortality event is devastating the populations of the endemic bivalve Pinna nobilis in the Mediterranean Sea from early autumn 2016. A newly described Haplosporidian endoparasite (Haplosporidium pinnae) is the most probable cause of this ecological catastrophe placing one of the largest bivalves of the world on the brink of extinction. As a pivotal step towards Pinna nobilis conservation, this contribution combines scientists and citizens’ data to address the fast- and vast-dispersion and prevalence outbreaks of the pathogen. Therefore, the potential role of currents on parasite expansion was addressed by means of drift simulations of virtual particles in a high-resolution regional currents model. A generalized additive model was implemented to test if environmental factors could modulate the infection of Pinna nobilis populations. The results strongly suggest that the parasite has probably dispersed regionally by surface currents, and that the disease expression seems to be closely related to temperatures above 13.5 °C and to a salinity range between 36.5–39.7 psu. The most likely spread of the disease along the Mediterranean basin associated with scattered survival spots and very few survivors (potentially resistant individuals), point to a challenging scenario for conservation of the emblematic Pinna nobilis, which will require fast and strategic management measures and should make use of the essential role citizen science projects can play.


2020 ◽  
Vol 7 ◽  
Author(s):  
Diego K. Kersting ◽  
Maite Vázquez-Luis ◽  
Baptiste Mourre ◽  
Fatima Z. Belkhamssa ◽  
Elvira Álvarez ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 696 ◽  
Author(s):  
Daniele Tibullo ◽  
Cesarina Giallongo ◽  
Alessandra Romano ◽  
Nunzio Vicario ◽  
Alessandro Barbato ◽  
...  

The proteasome inhibitor bortezomib (BTZ) has emerged as an effective drug for the treatment of multiple myeloma even though many patients relapse from BTZ therapy. The present study investigated the metabolic pathways underlying the acquisition of bortezomib resistance in multiple myeloma. We used two different clones of multiple myeloma cell lines exhibiting different sensitivities to BTZ (U266 and U266-R) and compared them in terms of metabolic profile, mitochondrial fitness and redox balance homeostasis capacity. Our results showed that the BTZ-resistant clone (U266-R) presented increased glycosylated UDP-derivatives when compared to BTZ-sensitive cells (U266), thus also suggesting higher activities of the hexosamine biosynthetic pathway (HBP), regulating not only protein O- and N-glycosylation but also mitochondrial functions. Notably, U266-R displayed increased mitochondrial biogenesis and mitochondrial dynamics associated with stronger antioxidant defenses. Furthermore, U266-R maintained a significantly higher concentration of substrates for protein glycosylation when compared to U266, particularly for UDP-GlcNac, thus further suggesting the importance of glycosylation in the BTZ pharmacological response. Moreover, BTZ-treated U266-R showed significantly higher ATP/ADP ratios and levels of ECP and also exhibited increased mitochondrial fitness and antioxidant response. In conclusions, our findings suggest that the HBP may play a major role in mitochondrial fitness, driving BTZ resistance in multiple myeloma and thus representing a possible target for new drug development for BTZ-resistant patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yi Zou ◽  
Jun Wang ◽  
Jian Peng ◽  
Hongkui Wei

Oregano essential oil (OEO) has long been used to improve the health of animals, particularly their intestinal health. The health benefits of OEO are generally attributed to antioxidative actions, but the mechanisms remain unclear. Here, we investigate the antioxidative effects of OEO and their underlying molecular mechanisms in porcine small intestinal epithelial (IPEC-J2) cells. We found that OEO treatment prior to hydrogen peroxide (H2O2) exposure increased cell viability and prevented lactate dehydrogenase (LDH) release into the medium. H2O2-induced reactive oxygen species (ROS) and malondialdehyde (MDA) were remarkably suppressed by OEO. OEO dose-dependently increased mRNA and protein levels of the nuclear factor-erythroid 2-related factor-2 (Nrf2) target genes Cu/Zn-superoxide dismutase (SOD1) and g-glutamylcysteine ligase (GCLC, GLCM), as well as intracellular concentrations of SOD1 and glutathione. OEO also increased intranuclear expression of Nrf2 and the activity of an antioxidant response element reporter plasmid in IPEC-J2 cells. The OEO-induced expression of Nrf2-regulated genes and increased SOD1 and glutathione concentrations in IPEC-J2 cells were reduced by Nrf2 small interfering (si) RNAs, counteracting the protective effects of OEO against oxidative stress in IPEC-J2 cells. Our results suggest that OEO protects against H2O2-induced IPEC-J2 cell damage by inducing Nrf2 and related antioxidant enzymes.


Author(s):  
Виктория Киреева ◽  
Viktoriya Kireeva ◽  
Ю. Усольцев ◽  
Yu. Usolcev ◽  
Ж. Капустенская ◽  
...  

Purpose of the study. To rate prognostic properties of changes in mitochondrial DNA concentration in the blood plasma of patients with chronic cerebral ischemia and ischemic heart disease in relation to the disease and the effectiveness of the therapy. Materials and methods. The study involved patients suffering from coronary heart disease (CHD) and chronic cerebral ischemia (CCI) with stable and unstable atherosclerotic plaques, who have signed informed consent to the data processing within the framework of scientific research. The patients were admitted to the hospital for examination and treatment of CHD and CCI in Cardiology and Neurology Unit of the Hospital of ISC SB RAS. The subjects underwent laboratory and instrumental examination and analysis of the level of free circulating serum mitochondrial DNA by real-time PCR (copies/ml). The examination results considered as satisfactory were compared with the mtDNA levels before and after the treatment. Results. The average value of the mtDNA levels before and after the treatment in patients of neurological and cardiological profile were significantly different: 1 093 686 copies/ml vs 418 046 copies/ml, respectively (p = 0.02). Unlike women, men mtDNA levels statistically significantly (p = 0.03) decreased after the treatment. We revealed statistically significant differences in mtDNA level indicators before and after the treatment, depending on the definition of the series (p = 0.0010) for rank test Kruskal – Wallis test. The results of the proposed research will help to identify prognostic factors of destabilization of cell damage and plaques in endothelial dysfunction, atherosclerosis and its complications, to conduct clinical test of the method for predicting and diagnostics of cellular damage in chronic ischemia on a background of atherosclerosis.


2013 ◽  
Vol 305 (3) ◽  
pp. L267-L277 ◽  
Author(s):  
Xian Fan ◽  
Bashar S. Staitieh ◽  
J. Spencer Jensen ◽  
Kara J. Mould ◽  
Jared A. Greenberg ◽  
...  

The master transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression of antioxidant and phase II-metabolizing enzymes by activating the antioxidant response element (ARE) and thereby protects cells and tissues from oxidative stress. Pulmonary complications remain the leading cause of death in human immunodeficiency virus (HIV)-1-infected individuals, who display systemic oxidative stress and glutathione deficiency that can be modeled in transgenic rats where HIV-1-related viral proteins decrease glutathione levels and cause epithelial barrier dysfunction within the alveolar space by as yet unknown mechanisms. We hypothesized that HIV-1-related proteins inhibit Nrf2-mediated antioxidant defenses and thereby disrupt the normally tight alveolar epithelial barrier. Nrf2 RNA silencing dampened Nrf2/ARE activity, decreased the expression of the tight junction proteins zonula occludens-1, occludin, and claudin-18, increased paracellular permeability of alveolar epithelial monolayers derived from wild-type rats, and therefore reproduced the effects of HIV-1 transgene expression on the epithelial barrier that we had previously described. In contrast, upregulating Nrf2 activity, either by plasmid-mediated overexpression or treatment with the Nrf2 activator sulforaphane, increased the expression of ARE-dependent antioxidants, including NAD(P)H dehydrogenase, quinone 1 and glutathione, improved the expression of tight junction proteins, and restored the ability to form tight barriers in alveolar epithelial cells from HIV-1 transgenic rats. Taken together, these new findings argue that HIV-1-related proteins downregulate Nrf2 expression and/or activity within the alveolar epithelium, which in turn impairs antioxidant defenses and barrier function, thereby rendering the lung susceptible to oxidative stress and injury. Furthermore, this study suggests that activating the Nrf2/ARE pathway with the dietary supplement sulforaphane could augment antioxidant defenses and lung health in HIV-1-infected individuals.


Sign in / Sign up

Export Citation Format

Share Document