scholarly journals Oregano Essential Oil Induces SOD1 and GSH Expression through Nrf2 Activation and Alleviates Hydrogen Peroxide-Induced Oxidative Damage in IPEC-J2 Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yi Zou ◽  
Jun Wang ◽  
Jian Peng ◽  
Hongkui Wei

Oregano essential oil (OEO) has long been used to improve the health of animals, particularly their intestinal health. The health benefits of OEO are generally attributed to antioxidative actions, but the mechanisms remain unclear. Here, we investigate the antioxidative effects of OEO and their underlying molecular mechanisms in porcine small intestinal epithelial (IPEC-J2) cells. We found that OEO treatment prior to hydrogen peroxide (H2O2) exposure increased cell viability and prevented lactate dehydrogenase (LDH) release into the medium. H2O2-induced reactive oxygen species (ROS) and malondialdehyde (MDA) were remarkably suppressed by OEO. OEO dose-dependently increased mRNA and protein levels of the nuclear factor-erythroid 2-related factor-2 (Nrf2) target genes Cu/Zn-superoxide dismutase (SOD1) and g-glutamylcysteine ligase (GCLC, GLCM), as well as intracellular concentrations of SOD1 and glutathione. OEO also increased intranuclear expression of Nrf2 and the activity of an antioxidant response element reporter plasmid in IPEC-J2 cells. The OEO-induced expression of Nrf2-regulated genes and increased SOD1 and glutathione concentrations in IPEC-J2 cells were reduced by Nrf2 small interfering (si) RNAs, counteracting the protective effects of OEO against oxidative stress in IPEC-J2 cells. Our results suggest that OEO protects against H2O2-induced IPEC-J2 cell damage by inducing Nrf2 and related antioxidant enzymes.

2021 ◽  
Vol 22 (16) ◽  
pp. 8406
Author(s):  
Jooyeon Lee ◽  
Jimin Jang ◽  
Sung-Min Park ◽  
Se-Ran Yang

Nuclear factor erythroid 2-related factor (Nrf2) is a transcriptional activator of the cell protection gene that binds to the antioxidant response element (ARE). Therefore, Nrf2 protects cells and tissues from oxidative stress. Normally, Kelch-like ECH-associated protein 1 (Keap1) inhibits the activation of Nrf2 by binding to Nrf2 and contributes to Nrf2 break down by ubiquitin proteasomes. In moderate oxidative stress, Keap1 is inhibited, allowing Nrf2 to be translocated to the nucleus, which acts as an antioxidant. However, under unusually severe oxidative stress, the Keap1-Nrf2 mechanism becomes disrupted and results in cell and tissue damage. Oxide-containing atmospheric environment generally contributes to the development of respiratory diseases, possibly leading to the failure of the Keap1-Nrf2 pathway. Until now, several studies have identified changes in Keap1-Nrf2 signaling in models of respiratory diseases, such as acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma. These studies have confirmed that several Nrf2 activators can alleviate symptoms of respiratory diseases. Thus, this review describes how the expression of Keap1-Nrf2 functions in different respiratory diseases and explains the protective effects of reversing this expression.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Sang Mi Park ◽  
Jae Kwang Kim ◽  
Eun Ok Kim ◽  
Kyung Hwan Jegal ◽  
Dae Hwa Jung ◽  
...  

Pericarpium zanthoxyli has been extensively used in traditional Oriental medicine to treat gastric disorders and has anti-inflammatory and antioxidative activities. Therefore, the present study examined a possible hepatoprotective effect of a P. zanthoxyli extract (PZE) and investigated the underlying molecular mechanisms. We employed an in vitro model of arachidonic acid (AA) + iron-induced hepatocyte damage and an in vivo model of CCl4-induced liver injury to assess the effects of PZE and evaluated the relevant molecular targets using biochemical assays, flow cytometry analysis, Western blot, and histopathological analysis. The PZE inhibited AA + iron-induced hepatotoxicity in HepG2 cells, improved mitochondrial dysfunction, and reversed an increase in the cellular H2O2 production and a decrease in the reduced GSH levels induced by AA + iron. Treatment with either 30 or 100 μg/ml PZE significantly increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and the latter dose also increased the antioxidant response element- (ARE-) driven luciferase activity and enhanced the protein expressions of glutamate-cysteine ligase catalytic subunit and NAD(P)H:quinone oxidoreductase 1. In addition, treatment with 100 μg/ml PZE for 3 or 6 h increased the phosphorylation rates of Nrf2 and the extracellular signal-regulated kinase. In the in vivo experiment, oral treatment with both 100 and 300 mg/kg PZE inhibited the plasma aspartate aminotransferase activity, and the latter also inhibited the plasma alanine aminotransferase activity. In addition, both doses of PZE ameliorated the parenchymal degeneration and necrosis in the liver induced by CCl4 administration, which was associated with reduced expressions of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase, nitrotyrosine, and 4-hydroxynonenal by PZE. These findings suggest that PZE has protective effects against hepatotoxicity both in vitro and in vivo, which are mainly mediated via its antioxidant activity.


2019 ◽  
Vol 16 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Tahereh Farkhondeh ◽  
Hanieh Shaterzadeh Yazdi ◽  
Saeed Samarghandian

Background: The therapeutic strategies to manage neurodegenerative diseases remain limited and it is necessary to discover new agents for their prevention and control. Oxidative stress and inflammation play a main role in the pathogenesis of neurodegenerative diseases. The aim of this study is to review the effects of green tea catechins against the Neurodegenerative Diseases. Methods: In this study, we extensively reviewed all articles on the terms of Green tea, catechins, CNS disorders, and different diseases in PubMed, Science Direct, Scopus, and Google Scholar databases between the years 1990 and 2017. Results: The present study found that catechins, the major flavonoids in green tea, are powerful antioxidants and radical scavengers which possess the potential roles in the management of neurodegenerative diseases. Catechins modulate the cellular and molecular mechanisms through the inflammation-related NF-&amp;#954;B and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Conclusion: The findings of the present review shows catechins could be effective against neurodegenerative diseases due to their antioxidation and anti-inflammation effects and the involved biochemical pathways including Nrf2 and NF-kB signaling pathways.<P&gt;


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Eun Sik Choi ◽  
Yun Jung Lee ◽  
Chang Seob Seo ◽  
Jung Joo Yoon ◽  
Byung Hyuk Han ◽  
...  

Samul-Tang (Si-Wu-Tang, SMT), composed of four medicinal herbs, is a well-known herbal formula treating hematological disorder or gynecologic disease. However, vascular protective effects of SMT and its molecular mechanisms on the vascular endothelium, known as the central spot of vascular inflammatory process, are not reported. The aim of this study was to investigate vascular protective effects of SMT water extract in human umbilical vein endothelial cells (HUVECs). Water extract of SMT was prepared and identified by HPLC-PDA analysis. Expression of cell adhesion molecules (CAMs) and heme oxygenase-1 (HO-1) and translocation of nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined by western blot. Nuclear localization of NF-κB and Nrf2 was visualized by immunofluorescence and DNA binding activity of NF-κB was measured. ROS production, HL-60 monocyte adhesion, and intracellular nitric oxide (NO) were also measured using a fluorescent indicator. SMT suppressed NF-κB translocation and activation as well as expression of CAMs, monocyte adhesion, and ROS production induced by TNF-αin HUVECs. SMT treated HUVECs showed upregulation of HO-1 and NO which are responsible for vascular protective action. Our study suggests that SMT, a traditionally used herbal formula, protects the vascular endothelium from inflammation and might be used as a promising vascular protective drug.


2005 ◽  
Vol 68 (12) ◽  
pp. 2571-2579 ◽  
Author(s):  
STÉPHANE CAILLET ◽  
FRANÇOIS SHARECK ◽  
MONIQUE LACROIX

This study was carried out to evaluate the effects of gamma radiation alone or in combination with oregano essential oil on the murein composition of Escherichia coli O157:H7 and on the intracellular and extracellular concentrations of ATP. The bacterial strain was treated with three radiation doses: 0.4 kGy to induce cell damage, 1.1 kGy to obtain a viable but nonculturable state, and 1.3 kGy to cause cell death. Oregano essential oil was used at 0.006 and 0.025% (wt/vol), which is the MIC. All treatments had a significant effect (P ≤ 0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment had a different effect on the relative percentage and number of muropeptides. There was a significant correlation (P ≤ 0.05) between the decrease in intracellular ATP and the increase in extracellular ATP following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when oregano oil was combined with irradiation, but irradiation alone at a high dose (≤1.1 kGy) significantly decreased (P ≤ 0.05) the internal ATP without affecting the external ATP. Transmission electron microscopic examination revealed that oregano oil and irradiation have an effect on cell wall structure.


Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 633
Author(s):  
Huifan Liu ◽  
Sufen Li ◽  
Yuming Zhong ◽  
Jianliang Liu ◽  
Hui Liu ◽  
...  

In this study, the antioxidant components in co-culture of Chlorella pyrenoidosa and Yarrowia lipolytica (3:1 ratio) were confirmed as trypsin-hydrolyzed peptides (EHPs). The EHPs were composed of 836 different peptides with molecular weights ranging from 639 to 3531 Da and were mainly composed of hydrophobic amino acids (48.1%). These peptides showed remarkable protective effects against oxidative stress in HepG2, which may be attributed to their structures. Furthermore, the mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly lower in the peptide-treated group than in the control group, suggesting that the antioxidant enzyme-coding genes were not activated. The EC50 value of three peptides in the EHPs were in the order of AGYSPIGFVR (0.04 ± 0.002 mg/mL) > VLDELTLAR (0.09 ± 0.001 mg/mL) > LFDPVYLFDQG (0.41 ± 0.03 mg/mL); these results agreed with the prediction of the model (R2 > 0.9, Q2 > 0.5). Thus, EHPs show potential as potent new antioxidant agents.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Rong Wang ◽  
Yongzheng Luo ◽  
Yadong Lu ◽  
Daojuan Wang ◽  
Tingyu Wang ◽  
...  

Ulcerative colitis (UC) is a common chronic remitting disease driven through altered immune responses with production of inflammatory cytokines. Oxidant/antioxidant balance is also suggested to be an important factor for the recurrence and progression of UC. Maggots are known as a traditional Chinese medicine also known as “wu gu chong.” NF-E2-related factor-2 (Nrf2) transcription factor regulates the oxidative stress response and also represses inflammation. The aim of this study was to investigate the effects of maggot extracts on the amelioration of inflammation and oxidative stress in a mouse model of dextran sulfate sodium- (DSS-) induced colitis and evaluate if the maggot extracts could repress inflammation and oxidative stress using RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). In the present study, we found that the maggot extracts significantly prevented the loss of body weight and shortening of colon length in UC induced by DSS. Furthermore, DSS-induced expression of proinflammatory cytokines at both mRNA and protein levels in the colon was also attenuated by the maggot extracts. In addition, the maggot extracts could significantly suppress the expression of interleukin- (IL-) 1β, IL-6, TNF-α, NFκB p65, p-IκB, p22-phox, and gp91-phox in LPS-stimulated RAW 264.7 cells and colonic tissues. The maggot extracts increased the level of Nrf2 and prevented the degradation of Nrf2 through downregulating the expression of Keap1, which resulted in augmented levels of HO-1, SOD, and GSH-Px and reduced levels of MPO and MDA. However, after administering an Nrf2 inhibitor (ML385) to block the Nrf2/HO-1 pathway, we failed to observe the protective effects of the maggot extracts in mice with colitis and RAW 264.7 cells. Taken together, our data for the first time confirmed that the maggot extracts ameliorated inflammation and oxidative stress in experimental colitis via modulation of the Nrf2/HO-1 pathway. This study sheds light on the possible development of an effective therapeutic strategy for inflammatory bowel diseases.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 745
Author(s):  
Shuoqi Jiang ◽  
Zhuangwei Zhang ◽  
FangFang Huang ◽  
Zuisu Yang ◽  
Fangmiao Yu ◽  
...  

The major component of the Solenocera crassicornis head protein hydrolysates-fraction 1 (SCHPs-F1) are low molecular weight peptides (MW < 1 kDa). In this study, we investigated the potential renoprotective effects of SCHPs-F1 in a cyclophosphamide (CTX) toxicity mouse model. In brief, 40 male mice were randomly divided into 5 groups and received either saline or 80 mg/kg body weight (BW) CTX by intraperitoneal injection for 5 days, followed by either saline or SCHPs-F1 (100, 200, and 400 mg/kg BW) by intragastric administration for 15 days. SCHPs-F1 treatment significantly reversed the CTX-induced decreases in the levels of blood urea nitrogen (BUN), creatinine (CRE), and cytochrome P450 (CYP450), as well as the renal histological lesions. Furthermore, the results indicated that SCHPs-F1 potentially alleviated CTX-induced nephrotoxicity through mitigating inflammatory responses, oxidative stress, and apoptosis status of the kidneys, as evidenced by decreased levels of malondialdehyde (MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ and increased levels of total antioxidant capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Moreover, overexpression of pro-apoptotic proteins pair B-cell lymphoma-2 (Bcl-2)-associated X (Bax)/Bcl-2, cysteinyl aspartate specific proteinase (caspase)-3 and caspase-9 in renal tissues were suppressed by treatment with SCHPs-F1. In addition, the protein levels of the antioxidant factor nuclear factor erythroid-2 related factor 2 (Nrf2) and the expression levels of its downstream target genes heme-oxygenase (HO-1), glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H dehydrogenase (quinone) 1 (NQO-1) were stimulated by treatment with SCHPs-F1 in the CTX-induced renal injury model. Taken together, our data suggested that SCHPs-F1 could provide a novel potential strategy in mitigating the nephrotoxicity caused by CTX.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Kai Ren ◽  
He Su ◽  
Li-juan Lv ◽  
Le-tai Yi ◽  
Xue Gong ◽  
...  

In previous studies, Gentianella acuta (Michx.) Hulten was reported to contain xanthones, iridoids, terpenoids, and sterols and is mainly used to cure hepatitis, jaundice, fever, headache, and angina pectoris. In this study, we used bioassay guided fractionation to identify compounds from G. acuta and investigated their activity against hydrogen peroxide (H2O2)-induced apoptosis of H9c2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic (GCLC) expression were assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated using western blot. The results showed that all four compounds had protective effects on H9c2 cells. The transcription levels of HO-1 and GCLC significantly increased in H9c2 cells pretreated with norswertianolin (1), swetrianolin (2), demethylbellidifolin (3), and bellidifolin (4). However, compared to the model group, the transcription levels of Nrf2 were not enhanced by pretreatment with compounds 1, 2, and 4. The protein expression levels of HO-1 and GCLC in H9c2 cells were greater than that in the H2O2-treated group, and the expression of Nrf2 was not significantly changed except by swetrianolin treatment; inhibitors can reverse the protective effect by ZnPP (15 μM), BSO (10 μM), and brusatol (10 μM). The results indicated that the four compounds isolated from G. acuta inhibited the oxidative injury induced by H2O2 by activating the Nrf2/ARE pathway in H9c2 cells and provide evidence that G. acuta may be a potential therapeutic agent for the treatment of cardiovascular diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Salma Baig ◽  
Ainnul Hamidah Syahadah Azizan ◽  
Hanumantha Rao Balaji Raghavendran ◽  
Elango Natarajan ◽  
Sangeetha Naveen ◽  
...  

We have determined the protective effects of Thymus serpyllum (TS) extract and nanoparticle-loaded TS on hydrogen peroxide-induced cell death of mesenchymal stromal cells (MSCs) in vitro. Gas chromatography–mass spectroscopy confirmed the spectrum of active components in the extract. Out of the three different extracts, the hexane extract showed significant free radical scavenging activity. Treatment of MSCs with H2O2 (hydrogen peroxide) significantly increased intracellular cell death; however, pretreatment with TS extract and nanoparticle-loaded TS (200 μg/ml) suppressed H2O2-induced elevation of Cyt-c and MMP13 and increased the survival rates of MSCs. H2O2-induced (0.1 mM) changes in cytokines were attenuated in the extract and nanoparticles by pretreatment and cotreatment at two time points (p<0.05). H2O2 increased cell apoptosis. In contrast, treatment with nanoparticle-loaded TS suppressed the percentage of apoptosis considerably (p<0.05). Therefore, TS may be considered as a potential candidate for enhancing the effectiveness of MSC transplantation in cell therapy.


Sign in / Sign up

Export Citation Format

Share Document