scholarly journals Synergistic Photoantimicrobial Chemotherapy of Methylene Blue-Encapsulated Chitosan on Biofilm-Contaminated Titanium

2021 ◽  
Vol 14 (4) ◽  
pp. 346
Author(s):  
Chiu-Nan Lin ◽  
Shinn-Jyh Ding ◽  
Chun-Cheng Chen

Intensive efforts have been made to eliminate or substantial reduce bacterial adhesion and biofilm formation on titanium implants. However, in the management of peri-implantitis, the methylene blue (MB) photosensitizer commonly used in photoantimicrobial chemotherapy (PACT) is limited to a low retention on the implant surface. The purpose of this study was to assess enhancive effect of water-soluble quaternary ammonium chitosan (QTS) on MB retention on biofilm-infected SLA (sandblasted, large grid, and acid-etched) Ti alloy surfaces in vitro. The effectiveness of QTS + MB with different concentrations in eliminating Gram-negative A. actinomycetemcomitans or Gram-positive S. mutans bacteria was compared before and after PACT. Bacterial counting and lipopolysaccharide (LPS) detection were examined, and then the growth of human osteoblast-like MG63 cells was evaluated. The results indicated that the synergistic QTS + MB with retention ability significantly decreased the biofilm accumulation on the Ti alloy surface, which was better than the same concentration of 1 wt% methyl cellulose (MC). More importantly, the osteogenic activity of MG63 cells on the disinfected sample treated by QTS + MB-PACT modality was comparable to that of sterile Ti control, significantly higher than that by MC + MB-PACT modality. It is concluded that, in terms of improved retention efficacy, effective bacteria eradication, and enhanced cell growth, synergistically, PACT using the 100 μg/mL MB-encapsulated 1% QTS was a promising modality for the treatment of peri-implantitis.

2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2596 ◽  
Author(s):  
Yongxia Cheng ◽  
Haibo Lan ◽  
Lei Zhao ◽  
Kai Wang ◽  
Zhuoyan Hu

The prebiotic potential of longan juice obtained by a commercial Viscozyme L for conversion of constituent sucrose to fructo-oligosaccharide was investigated. The physicochemical properties and carbohydrate composition of the longan juice was evaluated before and after enzymatic treatment. The stimulation effects of the treated longan juice on probiotic bacteria growth were also studied in vitro. The results showed that total soluble solids, yield and clarity of longan juice were all significantly improved after enzyme treatment. The water-soluble polysaccharide content, including pectin, was significantly increased. Compared with the natural longan pulp, the enzyme treated juice showed a significant decrease in sucrose content. Substantial fructo-oligosaccharides including 1-kestose and nystose were synthesized after enzyme treatment. The molecular weight distribution and the monosaccharide composition of the water-soluble polysaccharide were significantly changed by enzyme treatment. The treated longan juice and its ethanol-soluble sugar fraction promoted the growth of Streptococus thermophiles, Lactobacillus acidophilus and Lactobacillus delbrueckii, showing a good potential of the treated longan juice for producing functional foods and nutraceuticals.


2014 ◽  
Vol 08 (01) ◽  
pp. 001-008 ◽  
Author(s):  
Nicola Scotti ◽  
Allegra Comba ◽  
Alberto Gambino ◽  
Davide Salvatore Paolino ◽  
Mario Alovisi ◽  
...  

ABSTRACT Objective: The aim of this in vitro study was to evaluate the marginal sealing ability of a bulk fill flowable resin composite on both enamel and dentin substrates. Materials and Methods: 48 non-carious molars were selected and four Class-V cavities were prepared at the CEJ of each sample. Cavities were filled with Venus Diamond (Heraeus Kulzer); Venus Diamond Flow (Heraeus Kulzer) and Surefil SDR (Dentsply). Samples were divided into two groups: First group samples were immersed in a methylene blue solution for 30 min at 25°C. Second group samples were artificially aged and then treated with methylene blue. Samples were sectioned in the center of the restoration and observed with a 40x stereomicroscope, and the percentage of cavity infiltration was calculated. Results: Results were analyzed statistically by ANOVA (P < 0.05). The amount of infiltration was significantly lower for the enamel substrate compared with dentin (P = 0.0001) and in samples immediately immersed in methylene blue compared with those that were artificially aged (P = 0.011). The interaction between the composite material and the marginal substrate significantly affected dye penetration (P = 0.006). Conclusions: Bulk fill flowable resins provided significantly better marginal seal in dentin, both before and after artificial ageing. Nanohybrid resin composites and bulk fill flowable resins showed similar microleakage values at enamel margins. Bulk fills flowable resins provided significantly better marginal seal in dentin, both before and after artificial ageing. Nanohybrid resin composites and bulk fill flowable resins showed similar microleakage values at enamel margins.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1200 ◽  
Author(s):  
Ji Yeon Lee ◽  
Ludwig Erik Aguilar ◽  
Chan Hee Park ◽  
Cheol Sang Kim

Titanium implants are extensively used in biomedical applications due to their excellent biocompatibility, corrosion resistance, and superb mechanical stability. In this work, we present the use of polycaffeic acid (PCA) to immobilize metallic silver on the surface of titanium materials to prevent implant bacterial infection. Caffeic acid is a plant-derived phenolic compound, rich in catechol moieties and it can form functional coatings using alkaline buffers and with UV irradiation. This combination can trigger oxidative polymerization and deposition on the surface of metallic substrates. Using PCA can also give advantages in bone implants in decreasing inflammation by decelerating macrophage and osteoclast activity. Here, chemical and physical properties were investigated using FE-SEM, EDS, XPS, AFM, and contact angle. The in vitro biocompatibility and antibacterial studies show that PCA with metallic silver can inhibit bacterial growth, and proliferation of MC-3T3 cells was observed. Therefore, our results suggest that the introduced approach can be considered as a potential method for functional implant coating application in the orthopedic field.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 840 ◽  
Author(s):  
José Henrique de Lima Cavalcanti ◽  
Patrícia Matos ◽  
Cresus Vinícius Depes de Gouvêa ◽  
Waldimir Carvalho ◽  
José Luis Calvo-Guirado ◽  
...  

Manipulation of implant surface characteristics constitutes a promising strategy for improving cell growth and tissue response on a variety of materials with different surface topographies. Mesenchymal progenitor cells with a capacity to respond to titanium surface stimuli and differentiate into osteoblasts were used to perform comparative tests between two different implant topographies, including their functional interaction with pre-osteoblasts directly seeded onto the implants. Functional analysis of nanostructured implant surfaces was performed by in vitro assay analysis. The machined surface of titanium implants (mach group) was used as a control and compared with a nanoparticle HA activated surface implant (nano group), developed by the deposition of pure crystalline hydroxyapatite. Cell culture on the nano group surface resulted in higher cell adhesion and cultured osteoblast viability compared with the mach group. Scanning electron microscope (SEM) images revealed a stable interaction, indicated by the presence of focal cell adhesion formation. These results together with positive mineralization assays showed the nano group to be an excellent scaffold for bone-implant integration.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Carlos Nelson Elias ◽  
Patricia Abdo Gravina ◽  
Costa e Silva Filho ◽  
Pedro Augusto de Paula Nascente

Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength.Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed.Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification) were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN). The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells.Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%). The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm), suggested that FN incorporation is an important determinant of thein vitrocytocompatibility of the surfaces.Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yarong Wang ◽  
Zekun Gan ◽  
Haibin Lu ◽  
Ziyi Liu ◽  
Peng Shang ◽  
...  

Nowadays, the bone osseointegration in different environments is comparable, but the mechanism is unclear. This study aimed to investigate the osseointegration of different bioactive titanium surfaces under normoxic or high-altitude hypoxic environments. Titanium implants were subjected to one of two surface treatments: (1) sanding, blasting, and acid etching to obtain a rough surface, or (2) extensive polishing to obtain a smooth surface. Changes in the morphology, proliferation, and protein expression of osteoblasts on the rough and smooth surfaces were examined, and bone formation was studied through western blotting and animal-based experiments. Our findings found that a hypoxic environment and rough titanium implant surface promoted the osteogenic differentiation of osteoblasts and activated the JAK1/STAT1/HIF-1α pathway in vitro. The animal study revealed that following implant insertion in tibia of rabbit, bone repair at high altitudes was slower than that at low altitudes (i.e., in plains) after 2weeks; however, bone formation did not differ significantly after 4weeks. The results of our study showed that: (1) The altitude hypoxia environment would affect the early osseointegration of titanium implants while titanium implants with rough surfaces can mitigate the effects of this hypoxic environment on osseointegration, (2) the mechanism may be related to the activation of JAK1/STAT1/HIF-1α pathway, and (3) our results suggest the osteogenesis of titanium implants, such as oral implants, is closely related to the oxygen environment. Clinical doctors, especially dentists, should pay attention to the influence of hypoxia on early osseointegration in patients with high altitude. For example, it is better to choose an implant system with rough implant surface in the oral cavity of patients with tooth loss at high altitude.


2018 ◽  
Author(s):  
Siti Suhaila A Rahman ◽  

Aquilaria malaccensis is an agarwood-producing species in the family Thymeleaeceae. Agarwood is a fragrant resin used in the manufacture of incense sticks, and in pharmaceutical, perfumery and cosmetic industries. In addition to the resin, hydrosol and residual water by-products from agarwood woodchip distillation are also utilized. Hydrosol contains water-soluble fragrant chemicals used as a tonic drink, in cooking and cosmetics while the residual water is used in spas and aromatic bath treatments. The present study was conducted to identify and compare compounds present in hydrosol and residual water by-products of diploid and polyploid A. malaccensis. Four different four-month-old A. malaccensis plants were compared: soil-grown diploid seedlings (DS), in vitro-grown seedlings (DV), tissue culture-derived plantlets (DC) and artificially induced tetraploid plantlets (TC). Hydrosol water from TC leaf and root samples were found to contain higher amounts of compounds compared with other samples. The TC leaf samples were qualitatively better as key compounds of agarwood such as α- and γ-eudesmol were detected. TC stem samples also contained higher amounts of key compounds compared with other samples, while the overall amount of compounds was highest in DS stem samples. The residual water of TC stem and root samples contained key compounds not detected in other samples, while DS residual water samples contained the highest total amount of compounds. Aquilaria malaccensis tetraploids performed better than their diploid counterparts in production of compounds, and thus may be a better planting material choice for commercial plantations.


2015 ◽  
Vol 41 (5) ◽  
pp. e183-e188 ◽  
Author(s):  
Aswini Kumar K ◽  
Vinaya Bhatt ◽  
Manilal Balakrishnan ◽  
Mohamed Hashem ◽  
Sajith Vellappally ◽  
...  

This study compared the surface topography, hydrophilicity, and bioactivity of titanium implants after 3 different surface treatments (sandblasting and acid etching, modified sandblasting and acid etching, and thermal oxidation) with those of machined implants. One hundred indigenously manufactured threaded titanium implants were subjected to 3 methods of surface treatment. The surface roughness of the nontreated (Group A) and treated samples (Groups B through D) was evaluated with a scanning electron microscope (SEM) and profilometer. The wettability was visually examined using a colored dye solution. The calcium ions attached to the implant surface after immersing in simulated body fluid (SBF) were assessed on days 1, 2, and 7 with an atomic electron spectroscope. The data were analyzed statistically. The SBF test allowed the precipitation of a calcium phosphate layer on all surface-treated samples, as evidenced in the SEM analysis. A significantly higher amount of calcium ions and increased wettability were achieved in the thermally oxidized samples. The mean roughness was significantly lower in Group A (0.85 ± 0.07) compared to Group B (1.35 ± 0.17), Group C (1.40 ± 0.14), and Group D (1.36 ± 0.18). The observations from this in vitro study indicated that surface treatment of titanium improved the bioactivity. Moreover, results identified the implants that were sandblasted, acid etched, and then oxidized attracted more calcium ions.


Author(s):  
Abdallah Mohamed Ayoub ◽  
Mahmoud Mokhtar Ibrahim ◽  
Marwa Helmy Abdallah ◽  
Mahmoud A. Mahdy

<p><strong>Objective: </strong>The purpose of this study is to evaluate microemulsion based gel (MBG) of sulpiride "a poorly water soluble antipsychotic with low oral bioavailability."</p><p><strong>Methods: </strong>Gelling polymers such as sodium carboxymethylcellulose (CMC-Na), hydroxyl propyl methyl cellulose (HPMC K4m), carbopol 940 and Na alginate were evaluated for their potential to gel sulpiride microemulsions (MEs) without affecting the MEs structure. Also, sulpiride solution (SS) and conventional gel (without ME) were prepared and compared with MBG. Gel formulations were checked for their viscosity, pH, spreadability (S), mucoadhesive force (MF), and nasal ciliotoxicity studies. The <em>in vitro</em> release of sulpiride across a cellophane membrane and its permeation through the nasal mucosa in phosphate buffered saline pH 6.8 (PBS) were also performed. In addition, a pharmacodynamic study of optimized formulae compared to SS and microemulsion (ME) was evaluated in rats.</p><p><strong>Results: </strong>CMC-Na and HPMC K4m were not able to gel sulpiride loaded MEs while Na alginate gave an unclear gel with a sticky texture. Results revealed that the viscosity, mucoadhesion force, and spreadability of the MBG increased with increasing carbopol 940 concentrations. The flux was arranged as the following, MBG&gt;conventional gel&gt;sulpiride solution (SS). According to histopathological study, safe and non-irritant MBGs suitable for nasal administration were successfully prepared. Finally, the pharmacodynamic study indicated that intranasal sulpiride MBG had a significant effect (*P&lt;0.001) than SS and ME administered either intravenous or intranasal.</p><p><strong>Conclusion: </strong>MBG provides significant enhancement in nasal bioavailability not only by absorption enhancing effect of ME but also, by increasing nasal residence time</p>


Sign in / Sign up

Export Citation Format

Share Document