scholarly journals A Wirelessly Controlled Scalable 3D-Printed Microsystem for Drug Delivery

2021 ◽  
Vol 14 (6) ◽  
pp. 538
Author(s):  
Farzad Forouzandeh ◽  
Nuzhet N. Ahamed ◽  
Xiaoxia Zhu ◽  
Parveen Bazard ◽  
Krittika Goyal ◽  
...  

Here we present a 3D-printed, wirelessly controlled microsystem for drug delivery, comprising a refillable microreservoir and a phase-change peristaltic micropump. The micropump structure was inkjet-printed on the back of a printed circuit board around a catheter microtubing. The enclosure of the microsystem was fabricated using stereolithography 3D printing, with an embedded microreservoir structure and integrated micropump. In one configuration, the microsystem was optimized for murine inner ear drug delivery with an overall size of 19 × 13 × 3 mm3. Benchtop results confirmed the performance of the device for reliable drug delivery. The suitability of the device for long-term subcutaneous implantation was confirmed with favorable results of implantation of a microsystem in a mouse for six months. The drug delivery was evaluated in vivo by implanting four different microsystems in four mice, while the outlet microtubing was implanted into the round window membrane niche for infusion of a known ototoxic compound (sodium salicylate) at 50 nL/min for 20 min. Real-time shifts in distortion product otoacoustic emission thresholds and amplitudes were measured during the infusion, demonstrating similar results with syringe pump infusion. Although demonstrated for one application, this low-cost design and fabrication methodology is scalable for use in larger animals and humans for different clinical applications/delivery sites.

2019 ◽  
Author(s):  
Farzad Forouzandeh ◽  
Xiaoxia Zhu ◽  
Nuzhet N. Ahamed ◽  
Joseph P. Walton ◽  
Robert D. Frisina ◽  
...  

ABSTRACTActive implantable microscale reservoir-based drug delivery systems enabled novel and effective drug delivery concepts for both systemic and localized drug delivery applications. These systems typically consist of a drug reservoir and an active pumping mechanism for precise delivery of drugs. Here we present a stand-alone, refillable, scalable, and fully implantable microreservoir platform to be integrated with micropumps as a storing component of active implantable drug delivery microsystems. The microreservoir was fabricated with 3D-printing technology, enabling miniature, scalable, and planar structure, optimized for subcutaneous implantation especially in small animals (e.g., mouse), while being readily scalable for larger animals and human translation. Three different capacities of the microreservoir (1 μL, 10 μL, and 100 μL) were fabricated and characterized all with 3 mm thickness. The microreservoir consists of two main parts: a cavity for long-term drug storage with an outlet microtubing (250 μm OD, 125 μm ID), and a refill port for transcutaneous refills through a septum. The cavity membrane is fabricated with thin Parylene-C layers using a polyethylene glycol sacrificial layer, minimizing restoring force and hence backflow, as fluid is discharged. This feature enables integration to normally-open mechanisms and improves pumping efficiency when integrated to normally-closed pumps. The results of in vitro optimization and characterization of the cavity membrane show 95% extraction percentage of the cavity with insignificant (2%) backflow due to restoring force of the membrane. The refill port septum thickness is minimized down to 1 mm by a novel pre-compression concept, while capable of ~65000 injections with 30 Ga non-coring needles without leakage under 100 kPa (4× greater than physiological backpressure). To demonstrate integrability of the microreservoir to an active micropump, the 10 μL microreservoir was integrated to a micropump recently developed in our laboratory, making an implantable drug delivery microsystem. Two different microsystems were subcutaneously implanted in two mice, and the outlet microtubing was implanted into the round window membrane niche for infusion of a known ototoxic compound (sodium salicylate) at 50 nL/min for 20 min. Real-time shifts in distortion product otoacoustic emission thresholds and amplitudes were measured during the infusion. The in vivo results show a mean shift of 22.1 dB after 20 min for the most basal region, matching with syringe pump results. A biocompatibility experiment was performed on the microsystem for six months to assess design and fabrication suitability for chronic subcutaneous implantation and clinical translational development. The results demonstrate very favorable signs of biocompatibility for long-term implantation. Although tested here on mice for a specific inner ear application, this low-cost design and fabrication methodology is scalable for use in larger animals and human for different applications/delivery sites.


Designs ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 28 ◽  
Author(s):  
Ross J. Friel ◽  
Maria Gerling-Gerdin ◽  
Emil Nilsson ◽  
Björn P. Andreasson

Background: The purpose of this study was to determine if 3D printed lenses with wavelength specific anti-reflective (AR) surface structures would improve beam intensity and thus radar efficiency for a Printed Circuit Board (PCB)-based 60 GHz radar. This would have potential for improved low-cost radar lenses for the consumer product market. Methods: A hyperbolic lens was designed in 3D Computer Aided Design (CAD) software and was then modified with a wavelength specified AR structure. Electromagnetic computer simulation was performed on both the ‘smooth’ and ‘AR structure’ lenses and compared to actual 60 GHz radar measurements of 3D printed polylactic acid (PLA) lenses. Results: The simulation results showed an increase of 10% in signal intensity of the AR structure lens over the smooth lens. Actual measurement showed an 8% increase in signal of the AR structure lens over the smooth lens. Conclusions: Low cost and readily available Fused Filament Fabrication (FFF) 3D printing has been shown to be capable of printing an AR structure coated hyperbolic lens for millimeter wavelength radar applications. These 3D Printed AR structure lenses are effective in improving radar measurements over non-AR structure lenses.


Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


2021 ◽  
pp. 014556132199018
Author(s):  
Murat Koc ◽  
Abdullah Dalgic ◽  
Mehmet Ziya Ozuer

Objective: To investigate the effects of the mechanical trauma to the round window, a model electrode inserted into the scala tympani on the cochlear reserve, and the efficacy of topical steroids in preventing hearing loss. Materials and Methods: 21 male Wistar Albino rats were equally categorized into three groups. In all groups an initial mechanical injury to round window was created. Only subsequent dexamethasone injection was administrated into the cochlea in the subjects of group 2 while a multichannel cochlear implant guide inserted into the cochlea prior to dexamethasone administration for group 3. Distortion product otoacoustic emissions (DPOAEs) were obtained prior to and immediately after the surgical injury, eventually on postoperative seventh day (d 7). Mean signal/noise ratios (S/Ns) obtained at 2000, 3000, and 4000 Hz were calculated. Data sets were compared with non-parametric statistical tests. Results: The early intraoperative mean S/Ns were significantly less than preoperative measurements for group 1 and 2; however, preoperative and postoperative d 7 average S/Ns did not differ. There was statistically significant difference between preoperative, intraoperative and postoperative d 7 average S/Ns for group 3. Conclusion: We observed that hearing was restored approximately to the preoperative levels following early postoperative repair. However, an electrode insertion into the cochlea via round window subsequent to mechanical trauma seems to cause a progressive hearing loss. Therefore, a special care must be taken to avoid the injury to the round window membrane in the course of the placement of a cochlear implant electrode and surgery for the chronic otitis media.


2021 ◽  
Vol 11 (15) ◽  
pp. 6885
Author(s):  
Marcos D. Fernandez ◽  
José A. Ballesteros ◽  
Angel Belenguer

Empty substrate integrated coaxial line (ESICL) technology preserves the many advantages of the substrate integrated technology waveguides, such as low cost, low profile, or integration in a printed circuit board (PCB); in addition, ESICL is non-dispersive and has low radiation. To date, only two transitions have been proposed in the literature that connect the ESICL to classical planar lines such as grounded coplanar and microstrip. In both transitions, the feeding planar lines and the ESICL are built in the same substrate layer and they are based on transformed structures in the planar line, which must be in the central layer of the ESICL. These transitions also combine a lot of metallized and non-metallized parts, which increases the complexity of the manufacturing process. In this work, a new through-wire microstrip-to-ESICL transition is proposed. The feeding lines and the ESICL are implemented in different layers, so that the height of the ESICL can be independently chosen. In addition, it is a highly compact transition that does not require a transformer and can be freely rotated in its plane. This simplicity provides a high degree of versatility in the design phase, where there are only four variables that control the performance of the transition.


Author(s):  
Hanh

In this work, ZnO nanorods (NRs) were successfully grown on printed circuit board substrates (PCBs) by utilizing a one-step, seedless, low-cost hydrothermal method. It was shown that by implementing a galvanic cell structure in an aqueous solution of 80 mM of zinc nitrate hexahydrate and hexamethylenetetramine, ZnO NRs can directly grow on the PCBs substrate without the assistance of a seed layer. The effect of hydrothermal time on the surface morphologies, and the crystallinity of the as-grown ZnO nanorods (NRs) was also investigated. The as-grown ZnO NRs also exhibited a significant enhancement in vertical growth and their crystallinity with 5 hour growth.


2002 ◽  
Vol 124 (3) ◽  
pp. 205-211 ◽  
Author(s):  
John H. Lau ◽  
S. W. Ricky Lee ◽  
Stephen H. Pan ◽  
Chris Chang

An elasto-plastic-creep analysis of a low-cost micro via-in-pad (VIP) substrate for supporting a solder bumped flip chip in a chip scale package (CSP) format which is soldered onto a printed circuit board (PCB) is presented in this study. Emphasis is placed on the design, materials, and reliability of the micro VIP substrate and of the micro VIP CSP solder joints on PCB. The solder is assumed to obey Norton’s creep law. Cross-sections of samples are examined for a better understanding of the solder bump, CSP substrate redistribution, micro VIP, and solder joint. Also, the thermal cycling test results of the micro VIP CSP PCB assembly is presented.


Author(s):  
Robert N. Dean ◽  
Lauren E. Beckingham

Printed circuit board (PCB) sensors are a sensor technology where the layout of traces on a PCB has been optimized so that the traces electromagnetically interact with the surrounding environment. These types of sensors can be manufactured at very low cost using standard commercially available low-cost printed circuit board fabrication. Exposed conductive electrodes on the circuit board are useful for measuring the electrical conductivity of the surrounding environment, and these sensors have been used in applications such as salinity measurement and dissolved ion content measurement of aqueous solutions. Insulated interdigitated electrode sensors are useful for capacitively analyzing the surrounding environment, and these sensors have been used to detect the presence of liquid water and to measure the moisture content of substances in physical contact with the sensor. Additionally, by measuring the complex impedance of the capacitive sensor over a wide frequency range, information concerning the chemical composition of the substance in contact with the sensor can be determined. In addition to conducive and capacitive PCB sensors, the third type of PCB sensor would be an inductive sensor. Although it is challenging to realize 3D coils in PCB technology, planar inductors can be realized in a single Cu layer on a PCB, and insulated from the environment using a cover layer of polymeric solder mask. This type of electrode structure can inductively couple with magnetic materials in close proximity to the sensor. A variety of magnetic materials exist, including iron, nickel and cobalt. Additionally, many alloys of these elements are also magnetic. Of particular interest are corrosion products with magnetic properties, such as iron(III) oxide, Fe3O2, also known as common rust. A thin layer of iron(III) oxide powder deposited on the sensor's active area results in a measureable increase in the sensor's inductance. As such, an inductive PCB sensor could be a low-cost option for detecting the presence of some corrosion products in its operating environment.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000557-000562
Author(s):  
Robert N. Dean ◽  
Frank T. Werner ◽  
Michael J. Bozack

Abstract Printed circuit board (PCB) sensors using low-cost commercial printed circuit board fabrication processes have been demonstrated for environmental sensing applications. One configuration of these sensors uses exposed electrodes to measure saltwater concentration in freshwater/seawater mixtures, through monitoring the resistance between the electrodes when they are immersed in the saltwater/freshwater solution. The lowest cost commercial PCB processes use an immersion Sn HASL surface finish on exposed copper cladding, including the sensing electrodes. This commercial PCB process has been demonstrated to make an effective, low-cost, short-lifetime sensor for saltwater concentration testing. The Sn finish, however, may not be optimal for this application. Sn oxidizes, which can interfere with sensor performance. Additionally, Sn and Sn oxides are potentially reactive with chemical constituents in seawater and seawater/freshwater solutions. An immersion Au (ENIG) surface finish is certainly less reactive with the atmosphere and chemicals likely present in the testing environment. However, an immersion Au finish increases the cost of the sensors by 30% to 40%. To investigate if the possible benefits of the more expensive Au surface finish are worth the extra expense, a study was performed where identical PCB sensors were procured from a commercial vendor with their standard low-cost Sn HASL finish and with their standard ENIG surface finish. Both sets of sensors were then evaluated in concentrations of seawater and freshwater, from 0% to 100% seawater concentration, using freshwater samples from a natural freshwater source near the coast where the seawater was obtained. Testing demonstrated an insignificant difference in sensor performance between the Sn HASL and the ENIG coated sensing electrodes. The results of this investigation indicated that for applications where the sensors will not be used for long periods of time, the added expense of an immersion Au surface finish is not worth the added cost.


Sign in / Sign up

Export Citation Format

Share Document