scholarly journals Novel Formulation of Eye Drops Containing Choline Salicylate and Hyaluronic Acid: Stability, Permeability, and Cytotoxicity Studies Using Alternative Ex Vivo and In Vitro Models

2021 ◽  
Vol 14 (9) ◽  
pp. 849
Author(s):  
Katarzyna Barbara Wróblewska ◽  
Bartłomiej Milanowski ◽  
Małgorzata Kucińska ◽  
Szymon Plewa ◽  
Jolanta Długaszewska ◽  
...  

This work investigated the potential of a novel formulation of eye drops containing a non-steroidal anti-inflammatory drug—choline salicylate (CS)—and hyaluronic acid (HA). Thus, these drops may exert both anti-inflammatory and regenerative activity. The experiment was conducted through the careful characterization of physicochemical properties, stability, and quality of eye drops. Moreover, microbiological analysis, as well as penetration and cytotoxic studies, were performed. The UV, HPLC-UV, and HPLC-MS/MS methods were used to determine the purity and stability of CS. The penetration rate of CS was assessed using a hydrophilic membrane and ex vivo porcine cornea model. Additionally, the cytotoxic effects were evaluated using the SIRC cell line. The interaction between HA and CS was tested using size-exclusion chromatography and IR spectrophotometry. As a result, HA increased the viscosity of the drops, which prolonged their contact with the ocular surface, thus ensuring more effective penetration of CS into the corneal structure. After long-term storage, an interaction in the pharmaceutical phase between CS and HA was observed. However, this interaction did not affect the viability of rabbit corneal cells. Our findings showed that eye drops with CS and HA, stored at 2–8 °C in light-protected conditions, met the criteria of stability and safety.

2019 ◽  
Vol 20 (7) ◽  
pp. 1753 ◽  
Author(s):  
Piotr Michel ◽  
Sebastian Granica ◽  
Anna Magiera ◽  
Karolina Rosińska ◽  
Małgorzata Jurek ◽  
...  

Salicylate-rich plants are an attractive alternative to synthetic anti-inflammatory drugs due to a better safety profile and the advantage of complementary anti-inflammatory and antioxidant effects of the co-occurring non-salicylate phytochemicals. Here, the phytochemical value and biological effects in vitro and ex vivo of the stems of one of such plants, Gaultheria procumbens L., were evaluated. The best extrahent for effective recovery of the active stem molecules was established in comparative studies of five extracts. The UHPLC-PDA-ESI-MS3, HPLC-PDA, and UV-photometric assays revealed that the selected acetone extract (AE) accumulates a rich polyphenolic fraction (35 identified constituents; total content 427.2 mg/g dw), mainly flavanols (catechins and proanthocyanidins; 201.3 mg/g dw) and methyl salicylate glycosides (199.9 mg/g dw). The extract and its model components were effective cyclooxygenase-2, lipoxygenase, and hyaluronidase inhibitors; exhibited strong antioxidant capacity in six non-cellular in vitro models (AE and procyanidins); and also significantly and dose-dependently reduced the levels of reactive oxygen species (ROS), and the release of cytokines (IL-1β, IL-8, TNF-α) and proteinases (elastase-2, metalloproteinase-9) in human neutrophils stimulated ex vivo by lipopolysaccharide (LPS) and N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). The cellular safety of AE was demonstrated by flow cytometry. The results support the application of the plant in traditional medicine and encourage the use of AE for development of new therapeutic agents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1450
Author(s):  
Marco Ruggeri ◽  
Mauro Pavan ◽  
Matteo Soato ◽  
Susi Panfilo ◽  
Carlo Barbera ◽  
...  

Interstitial cystitis (IC) or painful bladder syndrome is a chronic dysfunction due to an inflammatory condition, characterized by bladder pain and urinary frequency. Currently, no gold standard therapy is available since IC does not respond to conventional ones. Given these premises, the aim of this work was the in vitro characterization of biological properties (mucoadhesion and anti-inflammatory activity) of a commercial product (HydealCyst–HydC) based on hyaluronic acid (HA) and the benzyl ester of HA (Hydeal-D®) intended for bladder instillation to restore and/or protect the urothelial layer of glycosamino glycans (GAGs). The in vitro characterization demonstrated that an interaction product is formed between HA and Hydeal-D® that has a role in the rheological behavior and mucoadhesive properties. HA was identified as a key component to form the mucoadhesive joint, while the interaction of HA with Hydeal-D® improved polysaccharide stability and prolonged the activity ex vivo. Moreover, HydC is cytocompatible with urothelial cells (HTB-4) and possesses an anti-inflammatory effect towards these cells by decreasing the secretion of IL-6 and IL-8, which were both increased in patients with IC, and by increasing the secretion of sulfated GAGs. These two findings, along with the resilience properties of the formulation due to mucoadhesion, suggest the active role of HydC in protecting and restoring urothelium homeostasis.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 48
Author(s):  
Laura Micheli ◽  
Marzia Vasarri ◽  
Emanuela Barletta ◽  
Elena Lucarini ◽  
Carla Ghelardini ◽  
...  

Posidonia oceanica (L.) Delile is traditionally used for its beneficial properties. Recently, promising antioxidant and anti-inflammatory biological properties emerged through studying the in vitro activity of the ethanolic leaves extract (POE). The present study aims to investigate the anti-inflammatory and analgesic role of POE in mice. Inflammatory pain was modeled in CD-1 mice by the intraplantar injection of carrageenan, interleukin IL-1β and formalin. Pain threshold was measured by von Frey and paw pressure tests. Nociceptive pain was studied by the hot-plate test. POE (10–100 mg kg−1) was administered per os. The paw soft tissue of carrageenan-treated animals was analyzed to measure anti-inflammatory and antioxidant effects. POE exerted a dose-dependent, acute anti-inflammatory effect able to counteract carrageenan-induced pain and paw oedema. Similar anti-hyperalgesic and anti-allodynic results were obtained when inflammation was induced by IL-1β. In the formalin test, the pre-treatment with POE significantly reduced the nocifensive behavior. Moreover, POE was able to evoke an analgesic effect in naïve animals. Ex vivo, POE reduced the myeloperoxidase activity as well as TNF-α and IL-1β levels; further antioxidant properties were highlighted as a reduction in NO concentration. POE is the candidate for a new valid strategy against inflammation and pain.


Author(s):  
Soichi Shibuya ◽  
Jessica Allen-Hyttinen ◽  
Paolo De Coppi ◽  
Federica Michielin

Abstract Purpose This paper aims to build upon previous work to definitively establish in vitro models of murine pseudoglandular stage lung development. These can be easily translated to human fetal lung samples to allow the investigation of lung development in physiologic and pathologic conditions. Methods Lungs were harvested from mouse embryos at E12.5 and cultured in three different settings, i.e., whole lung culture, mesenchyme-free epithelium culture, and organoid culture. For the whole lung culture, extracted lungs were embedded in Matrigel and incubated on permeable filters. Separately, distal epithelial tips were isolated by firstly removing mesothelial and mesenchymal cells, and then severing the tips from the airway tubes. These were then cultured either in branch-promoting or self-renewing conditions. Results Cultured whole lungs underwent branching morphogenesis similarly to native lungs. Real-time qPCR analysis demonstrated expression of key genes essential for lung bud formation. The culture condition for epithelial tips was optimized by testing different concentrations of FGF10 and CHIR99021 and evaluating branching formation. The epithelial rudiments in self-renewing conditions formed spherical 3D structures with homogeneous Sox9 expression. Conclusion We report efficient protocols for ex vivo culture systems of pseudoglandular stage mouse embryonic lungs. These models can be applied to human samples and could be useful to paediatric surgeons to investigate normal lung development, understand the pathogenesis of congenital lung diseases, and explore novel therapeutic strategies.


2021 ◽  
Vol 16 (4) ◽  
pp. 042003
Author(s):  
Uzair Ahmed ◽  
Rashid Ahmed ◽  
Muhammad Shareef Masoud ◽  
Muhammad Tariq ◽  
Usman Ali Ashfaq ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0197493 ◽  
Author(s):  
Luca Sanguigno ◽  
Antonella Casamassa ◽  
Niccola Funel ◽  
Massimiliano Minale ◽  
Rodolfo Riccio ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Vijendra Kumar Suryawanshi ◽  
Khomendra Kumar Sarwa ◽  
Suhas Narayan Sakarkar ◽  
Chanchal Deep Kaur

Background: Rosuvastatin calcium is a statin class of drug having limited oral bioavailability of about 20%. This problem might be overcome by making the biform complex using cow ghee fraction as a bioavailability enhancer. Methods: A precise thermal fractionation technique was adopted to separate different fatty acids from cow ghee. Collected fractions were subjected to characterization over parameters reported for fatty acids. LC-MS and FTIR confirm the content variation in the collected fraction. Biform complex was prepared by fusion method with a constant ratio of drug and cow ghee fraction. The prepared complex was subjected to FTIR, DSC, and LC-MS study to confirm chemical composition characteristics. Drug content, in-vitro and ex-vivo permeation studies were also performed. The anti-inflammatory response was measured using the carrageenan paw-induced edema rat model. Lipid-lowering effect and inflammation marker analysis was also performed using ELISA specific kit. Results: The biform complex prepared with a thermal fraction at 30ºC of cow ghee show the highest in-vitro and ex-vivo permeation. The anti-inflammation response of the biform complex F1 was higher than other tested formulations with considerable lipid and lipoprotein lowering properties. Conclusions: This study confirms that the thermal fractionation method abled to separate cow ghee as per their fatty acid content. The complexion of rosuvastatin calcium with cow ghee thermal fraction enhances oral bioavailability followed by the anti-inflammatory and lipid-lowering activity.


Sign in / Sign up

Export Citation Format

Share Document