scholarly journals Preparation of Acyclovir-Containing Solid Foam by Ultrasonic Batch Technology

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1571
Author(s):  
Ádám Haimhoffer ◽  
Ferenc Fenyvesi ◽  
István Lekli ◽  
Mónika Béreshova ◽  
István Bak ◽  
...  

In recent years, the application of solid foams has become widespread. Solid foams are not only used in the aerospace field but also in everyday life. Although foams are promising dosage forms in the pharmaceutical industry, their usage is not prevalent due to decreased stability of the solid foam structure. These special dosage forms can result in increased bioavailability of drugs. Low-density floating formulations can also increase the gastric residence time of drugs; therefore, drug release will be sustained. Our aim was to produce a stable floating formula by foaming. Matrix components, PEG 4000 and stearic acid type 50, were selected with the criteria of low gastric irritation, a melting range below 70 °C, and well-known use in oral drug formulations. This matrix was melted at 54 °C in order to produce a dispersion of active substance and was foamed by different gases at atmospheric pressure using an ultrasonic homogenizer. The density of the molded solid foam was studied by the pycnometer method, and its structure was investigated by SEM and micro-CT. The prolonged drug release and mucoadhesive properties were proved in a pH 1.2 buffer. According to our experiments, a stable foam could be produced by rapid homogenization (less than 1 min) without any surfactant material.

INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (11) ◽  
pp. 71-73
Author(s):  
Ch. Taraka Ramarao ◽  
◽  
J Vijaya Ratna ◽  
R. B. Srinivasa

The present investigation involves developing gastro retentive drug delivery systems (GFDDS) of alfuzosin HCl using HPMCK100M a is the matrixing agent and floating enhancer. Sodium bicarbonate in the acidic environment reacts with the acid and produces carbon dioxide. The gastro retentive tablets can be formulated to increase the gastric residence time and thereby increase the oral bioavailability. From the drug release study, it was concluded that the AFTB4 formula of HPMC K 100 M matrix tablets gives the controlled release up to 12 hours by showing increased release with floating lag time 24 seconds. Non – Fickian diffusion was the drug release mechanism from the matrix tablets formulated employing HPMC K 100 M. The matrix tablets (AFTB4) formulated employing 40 % HPMC K 100 M are best suited to be used for gastro retentive dosage form of alfuzosin HCl. Finally, it can be concluded that good candidates for the preparation of gastro retentive dosage forms due its gastric stability, gastric absorption and better bioavailability.


2019 ◽  
Vol 20 (2) ◽  
Author(s):  
Heidi Öblom ◽  
Jiaxiang Zhang ◽  
Manjeet Pimparade ◽  
Isabell Speer ◽  
Maren Preis ◽  
...  

Abstract The aim of the present work was to produce 3D-printed oral dosage forms with a sufficient drug dose displaying various release profiles. Hot-melt extrusion was utilized to produce drug-loaded feedstock material that was subsequently 3D-printed into 6, 8, and 10 × 2.5 mm tablets with 15% and 90% infill levels. The prepared formulations contained 30% (w/w) isoniazid in combination with one or multiple pharmaceutical polymers possessing suitable properties for oral drug delivery. Thirteen formulations were successfully hot-melt extruded of which eight had properties suitable for fused deposition modeling 3D printing. Formulations containing HPC were found to be superior regarding printability in this study. Filaments with a breaking distance below 1.5 mm were observed to be too brittle to be fed into the printer. In addition, filaments with high moisture uptake at high relative humidity generally failed to be printable. Different release profiles for the 3D-printed tablets were obtained as a result of using different polymers in the printed formulations. For 8 mm tablets printed with 90% infill, 80% isoniazid release was observed between 40 and 852 min. Drug release characteristics could further be altered by changing the infill or the size of the printed tablets allowing personalization of the tablets. This study presents novel formulations containing isoniazid for prevention of latent tuberculosis and investigates 3D printing technology for personalized production of oral solid dosage forms enabling adjustable dose and drug release properties.


Author(s):  
Christe Mary M ◽  
Sasikumar Swamiappan

Presently, various approaches have been exploited in the prolongation of gastric residence time which includes floating drug delivery system (FDDS), swelling and expanding systems, bio-adhesive systems, modified shape systems and high density systems. Among various methods, floating drug delivery system is considered to be a predominant method. Gastric emptying of dosage forms is an extremely varying process and ability to extend and control the emptying time is a valuable resource for the dosage forms. This FDDS is having the ability to provides a solution for this purpose. The FDDS is a bulk density system lower than the gastric fluid, so that the rest will float on the stomach contents for a prolonged period of time and allowing the drug to release slowly at a desired rate from the system and intensifies the bio-availability of the drug having narrow absorption window. The main intension of writing this review on floating drug delivery system is to study the mechanism of flotation to acheive the gastric retention and to discuss briefly about the background of FDDS, advantages and disadvantages, application of FDDS and factors affecting the gastric retension time.


Author(s):  
Y. Madhusudan Rao ◽  
Katakam V V ◽  
S Reddy ◽  
J M Somagoni ◽  
P K Panakanti ◽  
...  

The aim of this study was to prepare mini tablets to be filled into a capsule that is designed to float on the gastric contents based on gas formation technique. The drug-containing core mini-tablets were prepared by wet granulation method followed by a coating of the core units with seal coating, an effervescent layer and a gas-entrapping polymeric membrane (Eudragit RS30D, RL30D). Dipyridamole, which is predominantly absorbed in the upper part of GI tract and unabsorbed/insoluble at the lower intestine, was used as a model drug. The effect of the preparative parameters like amount of the effervescent agent layered onto the seal coated units, type and coating level of the gas-entrapping polymeric membrane, floating ability and drug release properties of the multiple-unit FDDS were evaluated. The formulations were evaluated for pharmacopoeial quality control tests. Physical parameters were found to be within the acceptable limits. The system using Eudragit® RL30D as a gas-entrapping polymeric membrane exhibited floating properties. The time to float decreased as amount of the effervescent agent increased and coating level of gas-entrapping polymeric membrane decreased. The optimum system exhibited complete floating within 3 minutes and maintained that buoyancy over a period of 8 hours. The drug release was sustained and linear with the square root of time. Increasing the coating level of the gas-entrapping polymeric membrane decreased drug release. Both the rapid-floating and sustained-release properties were achieved in the multiple-unit floating delivery system developed in this study. The in vivo gastric residence time was examined by radiograms and it was found that the units remained in the stomach for about 6 hours. The analysis of the dissolution data after storage at 40°C and 75% RH for 6 months showed no significant change indicating good stability.


2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


Author(s):  
Aravinthrajkumar G ◽  
Gayathri R ◽  
Vishnupriya V

  The challenge of drug delivery is the liberation of drug agents at the right time in a safe and reproducible manner, usually to a specific target site. Conventional dosage forms, such as orally administered pills and subcutaneous or intravenous injection, are the predominant routes for drug administration. However, pills and injections offer limited control over the rate of drug release into the body; usually, they are involved in an immediate release of the drug. This article is about how nanoparticles can be used as an effective drug delivery system to target the drug to a specific location or organ.


Author(s):  
Satbir Singh ◽  
Tarun Virmani ◽  
Reshu Virmani ◽  
Geeta Mahlawat ◽  
Pankaj Kumar

The Fast Dissolving Drug Delivery Systems sets a new benchmark was an expansion that came into existence in the early 1980’s and combat over the use of the different dosage form like tablets, suspension, syrups, capsules which are the other oral drug delivery systems. Fast Dissolving Drug Delivery System (FDTS)  has a major advantage over the conventional dosage forms since the drug gets rapidly disintegrated and dissolves in the saliva without the use of water .In spite of the downside lack of immediate onset of action; these oral dosage forms have valuable purposes such as self medication, increased patient compliance, ease of manufacturing and lack of pain. Hence Fast Disintegrating Tablets (FDTS) technology has been gaining importance now-a-days with wide variety of drugs serving many purposes. Fast Disintegrating Tablets (FDTS) has ever increased their demand in the last decade since they disintegrate in saliva in less than a minute that improved compliance in pediatrics and geriatric patients, who have difficulty in swallowing tablets or liquids. As fast dissolving tablet provide instantaneous disintegration after putting it on tongue, thereby rapid drug absorption and instantaneous bioavailability, whereas Fast dissolving oral films are used as practical alternative to FDTS. These films have a potential to deliver the drug systemically through intragastric, sublingual or buccal route of administration and also has been used for local action. In present review article different aspects of fast dissolving  tablets and films like method of preparations, latest technologies, evaluation parameters are discussed. This study will be useful for the researchers for their lab work.  


Author(s):  
Amit Prakash ◽  
Amit Prakash

Oral drug delivery is the most commonly used and preferred route of delivery of pharmaceuticals which has been successfully treating wide number of diseases. The advantages of this method of delivery are patient friendly, cost effective, established delivery system, noninvasiveness and convenient, and In the pharmaceutical field it is the most favored drug delivery system. Oral drug delivery systems along with other effective delivery system types that are effective and promising are discussed in this paper based on the mechanism of drug release.


2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


Sign in / Sign up

Export Citation Format

Share Document