scholarly journals The Effect of Thickness on the Properties of Laser-Deposited NiBSi-WC Coating on a Cu-Cr-Zr Substrate

Photonics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 127
Author(s):  
Yury Korobov ◽  
Yulia Khudorozhkova ◽  
Holger Hillig ◽  
Alexander Vopneruk ◽  
Aleksandr Kotelnikov ◽  
...  

Ni/60WC coatings on copper substrate were placed via laser deposition (LD). A structural study was conducted using electron microscopy and a microhardness evaluation. Two body abrasive wear tests were conducted with a pin-on-plate reciprocating technique. A tool steel X12MF GOST 5960 (C-Cr-Mo-V 1.6-12-0.5-0.2) with a hardness of 63 HRC was used as a counterpart. The following results were obtained: Precipitation of the secondary carbides takes place in the thicker layers. Their hardness is lower than that of the primary carbides in the deposition (2425 HV vs. 2757 HV) because they mix with the matrix material. In the thin layers, precipitation is restricted due to a higher cooling rate. For both LD coatings, the carbide’s hardness increases compared to the initial mono-tungsten carbide (WC)-containing powder (2756 HV vs. 2200 HV). Such a high level of microhardness reflects the combined influence of a low level of thermal destruction of carbides during laser deposition and the formation of a boride-strengthening phase from the matrix powder. The thicker layer showed a higher wear resistance; weight loss was 20% lower. The changes in the thickness of the laser deposited Ni-WC coating altered its structure and wear resistance.

Materials ◽  
2003 ◽  
Author(s):  
Michael H. Santare ◽  
Wenzhong Tang ◽  
John E. Novotny ◽  
Suresh G. Advani

High-density polyethylene (HDPE) was used as the matrix material for a carbon nanotube (CNT) polymer composites. Multi-wall carbon nanotube composite films were fabricated using the melt processing method. Composite samples with 0%, 1%, 3% and 5% nanotube content by weight were tested. The mechanical properties of the films were measured by the small punch test and wear resistance was measured with a block-on-ring wear tester. Results show increases in the stiffness, peak load, work-to-failure and wear resistance with increasing nanotube content.


2010 ◽  
Vol 663-665 ◽  
pp. 1061-1064 ◽  
Author(s):  
Yun Shan Wang ◽  
Neng Wen Liu ◽  
Fu Dong Zhu

In order to improve the service life of copper crystallizer, a layer of Ni-based alloy on thick copperplate surface was performed by plasma spray process, and then YAG pulsed laser was used to remelt spray coating. Microstructure analysis, hardness test, and the wear resistance comparison experiments were taken to the specimen. The result shown that the Ni-based alloy cladding, metallurgy bonding with the copperplate, can be performed by taking the method of the YAG laser remelt technology; the structure of the cladding is compact, without defects such as pores and cracks. The micro hardness of cladding zone is between 450-490HV, which is much higher than that of the copper substrate (about 90 HV). The wear tests showed the laser cladding layer performed 14 times higher wear resistance compared to copper substrate.


2020 ◽  
Vol 404 ◽  
pp. 68-76
Author(s):  
Philipp Warnecke ◽  
Thomas Seefeld

Highly conductive copper alloys are used for several tools in casting and welding technology. In order to improve the poor wear resistance of these alloys, metal matrix composite (MMC) layers were generated by laser melt injection (LMI). During LMI, a weld pool is induced on a substrate by a laser beam and a wear-resistant filler material is injected into this weld pool by a powder nozzle. In contrast to laser cladding, the filler material remains in the solid state and the substrate works as matrix material. Thereby, specific material properties of the substrate - e.g. a high thermal conductivity - can be provided not only in the core of the part but also within the coating. Fused tungsten carbide (FTC) was used as reinforcing material. It was shown that homogeneous MMC layers out of the copper alloy Hovadur® CNCS and FTC can be produced by laser melt injection. High process velocities of 8.75 m/min could be reached. For assessing the wear resistance, oscillating wear tests with counterparts made of steel were carried out and the wear height and the wear volume were determined. The particle reinforcement lead to a significant increase in wear resistance. Only one wear mechanism - abrasion - was identified.


2007 ◽  
Vol 534-536 ◽  
pp. 657-660
Author(s):  
Christian Gornik ◽  
Jochen Perko

M390 microclean® of Böhler Edelstahl is a powder metallurgical plastic mould steel with a high level of corrosion and wear resistance and therefore often used in the plastics processing industry. But as a consequence of rapidly advancing developments in the plastics processing industry the required level of wear resistance of tool steels in this field is constantly rising. For that reason a new PM tool steel with higher hardness values and an increased amount of primary carbides has been developed to improve the resistance against abrasive and adhesive wear. The wear resistance of both steels against adhesive situations for components of the plastification unit of injection moulding machines has been tested with a novel method. In case of processing polyolefins with an injection moulding machine it was found that there is adhesive wear between the check-ring and the flights of the screw tip of the non-return valve under certain circumstances. The temperature in that region was measured with an infrared temperature sensor. The existence of significant peaks of that signal was used as an indicator for an adhesive wear situation.


2019 ◽  
Vol 2 (2) ◽  
pp. 87-92
Author(s):  
Enikő Réka Fábián ◽  
László Tóth ◽  
Csenge Huszák

Abstract The microstructure of the investigated X153CrMoV12 grade tool steel in delivered condition consisted of spheroidal matrix and primary carbides. The primary carbides were not dissolved under austenitisation time on either 1030°C or 1070°C. The microstructure and abrasion resistance of the steel changed due to quenching from different austenitisation temperatures. After conventional quenching from the higher austenitising temperature, there is more residual austenite in the steel than at quenching from the lower austenitisation temperature, which decreased the wear resistance. As a result of quenching from 1070°C followed by a multiple tempering process around 500 to 540°C, the retained austenite content is reduced and finely dispersed carbides are precipitated in the matrix, resulting in a higher matrix hardness and an increased wear resistance. After cryogenic treatment, the residual austenite content decreases compared to the conventional process, which leads to an increase in hardness and wear resistance.


1991 ◽  
Vol 113 (4) ◽  
pp. 382-395 ◽  
Author(s):  
Z. G. Zhu ◽  
R. C. Batra

We study plane strain thermomechanical deformations of a prismatic viscoplastic body of square cross-section and deformed at a nominal strain-rate of 5000 s−1. The body has two thin layers placed symmetrically about the horizontal centroidal axis and an elliptical void at the center. The major axis of the void coincides with the vertical centroidal axis and also with the direction of loading. The layer material differs from that of the body in only the value of the yield stress in a quasistatic simple compression test. The yield stress for the layer material is taken to be either one-fifth or five times that of the matrix material. The deformations are assumed to be symmetrical about the vertical and horizontal centroidal axes. It is found that in each case shear bands initiate from points on the traction free edges where the matrix/layer interfaces intersect them and propagate into the softer material. For the soft layer these bands initially merge into one and propagate horizontally. Subsequently, each of these bands bifurcates into two which propagate into the matrix material along the direction of the maximum shear stress. There is minimal interaction between these bands and those initiating from points slightly away from the void tips. These latter bands pass through the soft layer rather easily. When the layer material is harder than the matrix material, the material in the first quadrant is eventually divided into five subregions each of which is deforming virtually rigidly and the velocity suffers a sharp jump across the boundaries between these regions.


2019 ◽  
Vol 116 (6) ◽  
pp. 602 ◽  
Author(s):  
Francisco Vapeani Guerra ◽  
Arnoldo Bedolla-Jacuinde ◽  
Jorge Zuno-Silva ◽  
Ignacio Mejia ◽  
Edgar Cardoso-Legorreta ◽  
...  

The present work analyzes the effect of 0.7%Ti and 1.7%W addition to a 17% chromium white iron in as-cast condition and after destabilization heat treatment. These alloys are commonly used in applications where a high abrasive wear resistance is required. For this reason, in addition to the characterization, a complementary wear test was performed. The alloys were characterized by optical and electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The simultaneous Ti and W addition promoted the (Ti,W)C primary carbides formation which grow in the early stages of solidification. These carbides were found well distributed in the iron matrix with an average hardness value of 2450 HV. Moreover, tungsten was found partially distributed in the different phases increasing the microhardness by solid solution and refining the eutectic carbide. These microstructural modifications resulted in the increase of the bulk hardness and abrasive wear resistance of the alloyed iron. After destabilization heat treatment, the carbide precipitation and the matrix transformation produced a secondary hardening reducing the wear losses. Based in the results of the present study, the simultaneous addition of these elements to promote the (Ti,W)C carbide formation during solidification represents an effective method to increase the hardness and wear resistance of these kind of alloys via small additions.


1992 ◽  
Vol 294 ◽  
Author(s):  
C.A. Handwerker ◽  
J.E. Blendell ◽  
C.G. Interrante ◽  
T.M. Ahn

ABSTRACTThe selection of materials that are suitable for various high-level waste-packaging designs must reflect the need to meet requirements for long-term performance in repository environments that change with time. With this in mind, we examine how grain boundaries in materials are induced to migrate as a result of solute diffusion even at low temperatures, how the composition of the matrix material is changed significantly by this diffusion-induced grain boundary migration (DIGM), and how the changing microstructures and compositions during DIGM lead to major changes in materials performance, such as corrosion or embrittlement. Methods are discussed for prediction of the long-term behavior of materials affected by DIGM.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1329 ◽  
Author(s):  
Bingxu Wang ◽  
Xue Han ◽  
Gary C. Barber ◽  
Yuming Pan

In this research, an austempering heat treatment was applied on gray cast iron using various austempering temperatures ranging from 232 °C to 371 °C and holding times ranging from 1 min to 120 min. The microstructure and hardness were examined using optical microscopy and a Rockwell hardness tester. Rotational ball-on-disk sliding wear tests were carried out to investigate the wear behavior of austempered gray cast iron samples and to compare with conventional quenched and tempered gray cast iron samples under equivalent hardness. For the austempered samples, it was found that acicular ferrite and carbon saturated austenite were formed in the matrix. The ferritic platelets became coarse when increasing the austempering temperature or extending the holding time. Hardness decreased due to a decreasing amount of martensite in the matrix. In wear tests, austempered gray cast iron samples showed slightly higher wear resistance than quenched and tempered samples under similar hardness while using the austempering temperatures of 232 °C, 260 °C, 288 °C, and 316 °C and distinctly better wear resistance while using the austempering temperatures of 343 °C and 371 °C. After analyzing the worn surface, abrasive wear and fatigue wear with the presence of pits, spalls, voids, long cracks, and wear debris were the main mechanisms for austempered gray cast iron with a low austempering temperature. However, only small pits and short cracks were observed on the wear track of austempered gray cast iron with high austempering temperature. Furthermore, the graphite flakes were exposed and ground by the counterpart surface during wear tests. Then, the graphite particles would form a tribo-layer to protect the contact surface.


DYNA ◽  
2020 ◽  
Vol 87 (214) ◽  
pp. 146-154
Author(s):  
Franklin Paz-Triviño ◽  
Robison Buitrago-Sierra ◽  
Juan Felipe Santa Marín

Abrasive wear is an important problema in industrial applications. The wear of tools in the mining industry is a costly issue, and it reduces equipment uptime. This study examined welded coatings obtained using a manual metal arc process with improved wear resistance. Their microstructure was studied by optical and electron microscopy. ASTM G99 (pin-on-disc) and ASTM G65 (dry sand/rubber wheel) wear tests were performed, and the worn surfaces were inspected to understand the wear mechanisms. The results show that the coating has a hypereutectic microstructure composed of austenite, NbC, and M7C3 carbides. The size of the nanocarbides was 91 nm; and the volume content, 5.3%. Hardness values were found around 1029 HV200 g, 15 seg. Low values of mass losses were attributed to the hypereutectic nanostructured hardfacing coating with extremely high hardness. The main wear mechanisms were microfracture and detachment of carbides and microcutting on the matrix.


Sign in / Sign up

Export Citation Format

Share Document