scholarly journals Thickness Measurement for Glass Slides Based on Chromatic Confocal Microscopy with Inclined Illumination

Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 170
Author(s):  
Qing Yu ◽  
Yali Zhang ◽  
Wenjian Shang ◽  
Shengchao Dong ◽  
Chong Wang ◽  
...  

Chromatic confocal microscopy is a widely used method to measure the thickness of transparent specimens. In conventional configurations, both the illumination and imaging axes are perpendicular to the test specimen. The reflection will be very weak when measuring high-transparency specimens. In order to overcome this limitation, a special chromatic confocal measuring system was developed based on inclined illumination. This design was able to significantly improve the signal-to-noise ratio. Compared with conventional designs, the proposed system was also featured by its biaxial optical scheme, instead of a coaxial one. This biaxial design improved the flexibility of the system and also increased the energy efficiency by avoiding light beam splitting. Based on this design, a prototype was built by the authors’ team. In this paper, the theoretical model of this specially designed chromatic confocal system is analyzed, and the calculating formula for the thickness of transparent specimen is provided accordingly. In order to verify its measurement performance, two experimental methodology and results are presented. The experimental results show that the repeatability is better than 0.54 μm, and the axial measurement accuracy of the system could reach the micron level.

2020 ◽  
pp. 30-35
Author(s):  
Gurami N. Akhobadze

In the age of digital transformation of production processes in industry and science the development and design of intelligent flow sensors for granular and liquid substances transferring through pipelines becomes more important. With this in view new approaches for improving the accuracy of microwave flowmeters are proposed. Taking into account the characteristics ofelectromagnetic waves propagating through a pipeline, a wave scattered by inhomogeneities of the controlled medium is analyzed. Features of the transformation of the polarized scattered wave limiting the geometric dimensions of the pipeline and optimizing the values of the useful scattered signal are revealed. Expediency of collection of the information signal with orthogonal polarization of the scattered wave and through a directional coupler is substantiated. The method of estimating the measurement accuracy with reference to the signal-to-noise ratio at the input of the processing device is given. The research results can be used in cryogenic machine engineering to measure volume and mass flows of liquid cryogenic products.


2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Eric Järpe ◽  
Mattias Weckstén

A new method for musical steganography for the MIDI format is presented. The MIDI standard is a user-friendly music technology protocol that is frequently deployed by composers of different levels of ambition. There is to the author’s knowledge no fully implemented and rigorously specified, publicly available method for MIDI steganography. The goal of this study, however, is to investigate how a novel MIDI steganography algorithm can be implemented by manipulation of the velocity attribute subject to restrictions of capacity and security. Many of today’s MIDI steganography methods—less rigorously described in the literature—fail to be resilient to steganalysis. Traces (such as artefacts in the MIDI code which would not occur by the mere generation of MIDI music: MIDI file size inflation, radical changes in mean absolute error or peak signal-to-noise ratio of certain kinds of MIDI events or even audible effects in the stego MIDI file) that could catch the eye of a scrutinizing steganalyst are side-effects of many current methods described in the literature. This steganalysis resilience is an imperative property of the steganography method. However, by restricting the carrier MIDI files to classical organ and harpsichord pieces, the problem of velocities following the mood of the music can be avoided. The proposed method, called Velody 2, is found to be on par with or better than the cutting edge alternative methods regarding capacity and inflation while still possessing a better resilience against steganalysis. An audibility test was conducted to check that there are no signs of audible traces in the stego MIDI files.


2011 ◽  
Vol 383-390 ◽  
pp. 5300-5303
Author(s):  
Wei Liu ◽  
Xiao Jie Song ◽  
Wen Gang Chen

It’s very difficult to get high precision measuring result using contact torquemeter because of very low signal-to-noise ratio. To overcome this defect, a wireless torque measuring system is designed based on CC2500. This system uses strain gauge torque sensor to measure the surface principal stress of the transmission shaft, and get the maximum shearing stress, and then the torque that the transmission shaft bears. The weak output signal of torque sensor is magnified by the instrumentation amplifier AD623, and sent to the analog-to-digital convertor. These digital data are transmited to the portable receiving terminal by the wireless transceiver chip CC2500. The dynamic wireless torque measurement is realized by this system.


2004 ◽  
Vol 4 (3) ◽  
pp. 621-626 ◽  
Author(s):  
D. Janches ◽  
M. C. Nolan ◽  
M. Sulzer

Abstract. Precise knowledge of the angle between the meteor vector velocity and the radar beam axis is one of the largest source of errors in the Arecibo Observatory (AO) micrometeor observations. In this paper we study ~250 high signal-to-noise ratio (SNR) meteor head-echoes obtained using the dual-beam 430 MHz AO Radar in Puerto Rico, in order to reveal the distribution of this angle. All of these meteors have been detected first by the radar first side lobe, then by the main beam and finally seen in the side lobe again. Using geometrical arguments to calculate the meteor velocity in the plane perpendicular to the beam axis, we find that most of the meteors are travelling within ~15° with respect to the beam axis, in excellent agreement with previous estimates. These results suggest that meteoroids entering the atmosphere at greater angles may deposit their meteoric material at higher altitudes explaining at some level the missing mass inconsistency raised by the comparisson of meteor fluxes derived from satellite and traditional meteor radar observations. They also may be the source of the observed high altitude ions and metalic layers observed by radars and lidars respectively.


1995 ◽  
Vol 85 (1) ◽  
pp. 308-319 ◽  
Author(s):  
Jin Wang ◽  
Ta-Liang Teng

Abstract An artificial neural network-based pattern classification system is applied to seismic event detection. We have designed two types of Artificial Neural Detector (AND) for real-time earthquake detection. Type A artificial neural detector (AND-A) uses the recursive STA/LTA time series as input data, and type B (AND-B) uses moving window spectrograms as input data to detect earthquake signals. The two AND's are trained under supervised learning by using a set of seismic recordings, and then the trained AND's are applied to another set of recordings for testing. Results show that the accuracy of the artificial neural network-based seismic detectors is better than that of the conventional algorithms solely based on the STA/LTA threshold. This is especially true for signals with either low signal-to-noise ratio or spikelike noises.


2018 ◽  
Vol 616 ◽  
pp. A82 ◽  
Author(s):  
B. Proxauf ◽  
R. da Silva ◽  
V. V. Kovtyukh ◽  
G. Bono ◽  
L. Inno ◽  
...  

We gathered more than 1130 high-resolution optical spectra for more than 250 Galactic classical Cepheids. The spectra were collected with the optical spectrographs UVES at VLT, HARPS at 3.6 m, FEROS at 2.2 m MPG/ESO, and STELLA. To improve the effective temperature estimates, we present more than 150 new line depth ratio (LDR) calibrations that together with similar calibrations already available in the literature allowed us to cover a broad range in wavelength (5348 ≤ λ ≤ 8427 Å) and in effective temperature (3500 ≤ Teff ≤ 7700 K). This gives us the unique opportunity to cover both the hottest and coolest phases along the Cepheid pulsation cycle and to limit the intrinsic error on individual measurements at the level of ~100 K. As a consequence of the high signal-to-noise ratio of individual spectra, we identified and measured hundreds of neutral and ionized lines of heavy elements, and in turn, have the opportunity to trace the variation of both surface gravity and microturbulent velocity along the pulsation cycle. The accuracy of the physical parameters and the number of Fe I (more than one hundred) and Fe II (more than ten) lines measured allowed us to estimate mean iron abundances with a precision better than 0.1 dex. We focus on 14 calibrating Cepheids for which the current spectra cover either the entire or a significant portion of the pulsation cycle. The current estimates of the variation of the physical parameters along the pulsation cycle and of the iron abundances agree very well with similar estimates available in the literature. Independent homogeneous estimates of both physical parameters and metal abundances based on different approaches that can constrain possible systematics are highly encouraged.


Author(s):  
Fenghui Lian ◽  
Qingchang Tan ◽  
Siyuan Liu

A method for measuring block thicknesses is proposed by the machine vision measurement. Equations of the measuring base plane and the light plane are formed by calibration. Then, the equation of the light strip image, that is, the image of the intersection between the base plane and light one, is established by the projection relation. Equation of the image of the light strip on the measured plane can be determined by the fitting. Since the light strip on the measuring base plane is parallel to one on the measured plane, the thickness of the measuring block is measured by using the two equations. The experiment evaluates the measurement accuracy of the measurement method and analyzes the influence of some factors on the measurement results.


2017 ◽  
Vol 8 (4) ◽  
pp. 58-83 ◽  
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2018 ◽  
Vol 8 (3) ◽  
pp. 226-236
Author(s):  
Elizabeth A. Daniels

Using an experimental methodology, the present study assessed college students’ perceptions of a male peer who presented himself on Facebook in either an objectified or nonobjectified manner. One hundred eighty-nine college students ( n = 111 women, n = 78 men) viewed a Facebook profile with either an objectified or a nonobjectified profile photo of the same young man and then evaluated the profile owner. They also reported on the desirability of dating the profile owner. Results indicated that the objectified profile owner was considered less competent but not less socially appealing or physically attractive. Participants liked the nonobjectified profile and profile photo better than the objectified profile and profile photo. There was also more interest in a committed dating relationship with the nonobjectified profile owner than the objectified profile owner. Findings suggest that using an objectified profile photo on Facebook may come with some costs for young men.


2021 ◽  
Vol 253 ◽  
pp. 11012
Author(s):  
H. Imam

The particle flux increase (pile-up) at the HL-LHC with luminosities of L = 7.5 × 1034 cm−2 s−1 will have a significant impact on the reconstruction of the ATLAS detector and on the performance of the trigger. The forward region and the end-cap where the internal tracker has poorer longitudinal track impact parameter resolution, and where the liquid argon calorimeter has coarser granularity, will be significantly affected. A High Granularity Time Detector (HGTD) is proposed to be installed in front of the LAr end-cap calorimeter for the mitigation of the pileup effect, as well as measurement of luminosity. It will have coverage of 2.4 to 4.0 from the pseudo-rapidity range. Two dual-sided silicon sensor layers will provide accurate timing information for minimum-ionizing particles with a resolution better than 30 ps per track (before irradiation), for assigning each particle to the correct vertex. The readout cells are about 1.3 mm × 1.3 mm in size, which leads to a high granular detector with 3 million channels. The technology of low-gain avalanche detectors (LGAD) with sufficient gain was chosen to achieve the required high signal-to-noise ratio. A dedicated ASIC is under development with some prototypes already submitted and evaluated. The requirements and general specifications of the HGTD will be maintained and discussed. R&D campaigns on the LGAD are carried out to study the sensors, the related ASICs and the radiation hardness. Both laboratory and test beam results will be presented.


Sign in / Sign up

Export Citation Format

Share Document