scholarly journals Control of Plant Viral Diseases by CRISPR/Cas9: Resistance Mechanisms, Strategies and Challenges in Food Crops

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1264
Author(s):  
Saleh Ahmed Shahriar ◽  
M. Nazrul Islam ◽  
Charles Ng Wai Chun ◽  
Md. Abdur Rahim ◽  
Narayan Chandra Paul ◽  
...  

Protecting food crops from viral pathogens is a significant challenge for agriculture. An integral approach to genome-editing, known as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR associated protein 9), is used to produce virus-resistant cultivars. The CRISPR/Cas9 tool is an essential part of modern plant breeding due to its attractive features. Advances in plant breeding programs due to the incorporation of Cas9 have enabled the development of cultivars with heritable resistance to plant viruses. The resistance to viral DNA and RNA is generally provided using the Cas9 endonuclease and sgRNAs (single-guide RNAs) complex, targeting particular virus and host plant genomes by interrupting the viral cleavage or altering the plant host genome, thus reducing the replication ability of the virus. In this review, the CRISPR/Cas9 system and its application to staple food crops resistance against several destructive plant viruses are briefly described. We outline the key findings of recent Cas9 applications, including enhanced virus resistance, genetic mechanisms, research strategies, and challenges in economically important and globally cultivated food crop species. The research outcome of this emerging molecular technology can extend the development of agriculture and food security. We also describe the information gaps and address the unanswered concerns relating to plant viral resistance mediated by CRISPR/Cas9.

The phenotypic variation that the breeder must manipulate to produce improved genotypes typically contains contributions from both heritable and non-heritable sources as well as from interactions between them. The totality of this variation can be understood only in terms of a methodology such as that of biometrical genetics - an extension of classical Mendelian genetics that retains all of its analytical, interpretative and predictive powers but only in respect of the net or summed effects of all contributing gene loci. In biometrical genetics the statistics that describe the phenotypic distributions are themselves completely described by heritable components based on the known types of gene action and interaction in combination with nonheritable components defined by the statistical properties of the experimental design. Biometrical genetics provides a framework for investigating the genetical basis and justification for current plant breeding strategies that are typified by the production of F 1 hybrids at one extreme and recombinant inbred lines at the other. From the early generations of a cross it can extract estimates of the heritable components of the phenotypic distributions that provide all the information required to interpret the cause of F 1 heterosis and predict the properties of any generation that can subsequently be derived from the cross. Applications to crosses in experimental and crop species show that true overdominance is not a cause of F 1 heterosis, although spurious overdominance arising from linkage disequilibria and non-allelic interactions can be. Predictions of the phenotypic distributions and ranges of recombinant inbred lines that should be extractable from these crosses are confirmed by observations made on random samples of inbred families produced from them by single seed descent. Within these samples, recombinant inbred lines superior to existing inbred lines and their F 1 hybrids are observed with the predicted frequencies.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 77 ◽  
Author(s):  
Guo-Liang Jiang

A plant breeding program needs to evaluate a large number of materials for different traits within a limited time. Near-infrared (NIR) spectroscopy has been used to quickly determine seed composition in various crop species. In this study, we compared whole-seed evaluations of protein and oil content by NIR methods in soybean [Glycine max (L.) Merr.], and then discussed the application to plant breeding. The differences among the entries tested were highly significant in both traits for each method used. No significant difference but high correlation and consistency existed between DA 7250 and wet-chemistry methods. Compared with DA 7250, ZX-50 exhibited, to some extent, differences or errors. The differences of ZX-50 methods were found to be correlated with seed sizes and could be corrected using regression equations formulated for bias calculation. After correction, the differences in the predictions between DA 7250 and ZX-50 methods were insignificant. Similar to DA 7250, ZX-50 methods exhibited a high repeatability (> 98%) of the predictions. By validation with 760 bulk samples of different seed types and 240 single-plant samples, it further demonstrated that as a non-destructive, fast and cost-efficient method, ZX-50 NIR analysis with an appropriate bias correction could be used in soybean breeding, specifically suitable for single plant selection based on whole seeds.


2020 ◽  
Vol 71 (22) ◽  
pp. 6890-6906 ◽  
Author(s):  
Fauzia Zarreen ◽  
Supriya Chakraborty

Abstract Geminiviruses constitute one of the largest families of plant viruses and they infect many economically important crops. The proteins encoded by the single-stranded DNA genome of these viruses interact with a wide range of host proteins to cause global dysregulation of cellular processes and help establish infection in the host. Geminiviruses have evolved numerous mechanisms to exploit host epigenetic processes to ensure the replication and survival of the viral genome. Here, we review our current knowledge of diverse epigenetic processes that have been implicated in the regulation of geminivirus pathogenesis, including DNA methylation, histone post-transcriptional modification, chromatin remodelling, and nucleosome repositioning. In addition, we discuss the currently limited evidence of host epigenetic defence responses that are aimed at counteracting geminivirus infection, and the potential for exploiting these responses for the generation of resistance against geminiviruses in crop species.


2020 ◽  
Vol 100 ◽  
pp. 51-66 ◽  
Author(s):  
Natalie Kaiser ◽  
David Douches ◽  
Amit Dhingra ◽  
Kevin C. Glenn ◽  
Philip Reed Herzig ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 669 ◽  
Author(s):  
Adriana E. Cisneros ◽  
Alberto Carbonell

Artificial small RNAs (art-sRNAs), such as artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs), are highly specific 21-nucleotide small RNAs designed to recognize and silence complementary target RNAs. Art-sRNAs are extensively used in gene function studies or for improving crops, particularly to protect plants against viruses. Typically, antiviral art-sRNAs are computationally designed to target one or multiple sites in viral RNAs with high specificity, and art-sRNA constructs are generated and introduced into plants that are subsequently challenged with the target virus(es). Numerous studies have reported the successful application of art-sRNAs to induce resistance against a large number of RNA and DNA viruses in model and crop species. However, the application of art-sRNAs as an antiviral tool has limitations, such as the difficulty to predict the efficacy of a particular art-sRNA or the emergence of virus variants with mutated target sites escaping to art-sRNA-mediated degradation. Here, we review the different classes, features, and uses of art-sRNA-based tools to induce antiviral resistance in plants. We also provide strategies for the rational design of antiviral art-sRNAs and discuss the latest advances in developing art-sRNA-based methodologies for enhanced resistance to plant viruses.


2003 ◽  
Vol 92 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Rob Goldbach ◽  
Etienne Bucher ◽  
Marcel Prins

2009 ◽  
Vol 36 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Xuanqiang Liang ◽  
Guiyuan Zhou ◽  
Yanbin Hong ◽  
Xiaopin Chen ◽  
Haiyan Liu ◽  
...  

Abstract Aflatoxin contamination in peanut is a serious and world-wide problem concerning food safety and human health. Plant-host resistance is a highly desirable tactic that can be used to manage this problem. This review summarizes research progress in peanut host resistance mechanisms to aflatoxin contamination at the Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Through systematic resistance evaluations, germplasm lines resistant to Aspergillus flavus invasion have been identified and two resistant cultivars were developed and released in South China. The resistance has been associated with testa wax and presence of cutin layer, active oxygen and membrane lipid peroxidation, phytoalexin accumulation, and antifungal proteins in the peanut kernels. Functional genomics will be a valuable tool to understand the comprehensive mechanisms governing the resistance pathways. In this paper we also summarized the advances made by our group in the area of genomic research, especially in mining EST-SSRs, development of a genetic linkage map and QTLs mapping in the cultivated peanut species.


2021 ◽  
Vol 13 (SI) ◽  
pp. 63-68
Author(s):  
E. Pasupathi ◽  
M. Murugan ◽  
C. Chinniah ◽  
J. Ramalingam ◽  
G. Karthikeyan ◽  
...  

The present study aimed to investigate the effect of age of the okra plants that showed varying whitefly resistance responses on the transmission rate of okra enation leaf curl virus (OELCV) by its vector whitefly Bemisia tabaci. The OELCV infected whitefly adults were collected from whitefly colonies and were challenged on the test okra accessions (Upl mona 2, Co 1, Arka anamika and AE 64) of differential ages which were individually caged (7, 10 and 15 d after germination) with glass chimney and the number of such whiteflies used were at the rate of 2, 4, 6, 8, 10, 12, 14 and 20 adults per plant. Observations were made on the virus symptom expression 30 d after challenge. The efficiency of transmission was determined. The efficiency of transmission of OELCV was the highest (maximum T and P*, 0.80, 1.00 and 0.08, 0.10) when 7 d old seedlings were inoculated (Arka anamika and AE 64 respectively) and transmission had decreased as the age of seedlings increased. The estimated transmission rate for single whitefly (P*) increased with an increase in the number of whiteflies used per plant. Okra plant resistance to B. tabaci significantly changed the transmission rates of OELCV on okra. Understanding the resistance mechanisms of the okra accessions and interactions between plant viruses and their insect host can pave the way for novel approaches to protect plants from virus infection.


2021 ◽  
Vol 9 (07) ◽  
pp. 119-123
Author(s):  
Yashpal a

The plant-Trichoderma-pathogen triangle is a complexnet of several techniques. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being a hitplant Symbioticorganisms. Trichoderma spp. additionally behave as a low cost, powerful and ecofriendly biocontrol agent. They can set themselves up in numerouspatho-systems, have minimum effectat the soil equilibrium and do now no longer impair beneficial organisms that make contributions to the manipulate of pathogens. This symbiotic affiliation in plant life results in the purchase of plant resistance to pathogens, improves developmental techniques and yields and promotes absorption of nutrient and fertilizer use efficiency. Among different biocontrol mechanisms, antibiosis, opposition and mycoparasitism are a number of the major capabilities through which microorganisms, including Thrichoderma, react to the presence of different aggressive pathogenic organisms, thereby stopping or obstructing their development. Stimulation of each systementails the biosynthesis of centered metabolites like plant increase regulators, enzymes, siderophores, antibiotics, etc. This evaluation summarizes the organic manipulate past time exerted by Trichoderma spp. and sheds mildat thecurrentdevelopment in pinpointing the ecological importance of Trichoderma on the biochemical and molecular stagewithinside the rhizosphere in addition to the blessings of symbiosis to the plant host in phrases of physiological and biochemical mechanisms. From an applicative factor of view, the prooffurnished herein strongly helps the opportunity to use Trichoderma as a safe, ecofriendly and powerful biocontrol agent for one-of-a-kind crop species.


2018 ◽  
Vol 19 (10) ◽  
pp. 2856 ◽  
Author(s):  
Jean-Luc Gallois ◽  
Benoît Moury ◽  
Sylvie German-Retana

In view of major economic problems caused by viruses, the development of genetically resistant crops is critical for breeders but remains limited by the evolution of resistance-breaking virus mutants. During the plant breeding process, the introgression of traits from Crop Wild Relatives results in a dramatic change of the genetic background that can alter the resistance efficiency or durability. Here, we conducted a meta-analysis on 19 Quantitative Trait Locus (QTL) studies of resistance to viruses in plants. Frequent epistatic effects between resistance genes indicate that a large part of the resistance phenotype, conferred by a given QTL, depends on the genetic background. We next reviewed the different resistance mechanisms in plants to survey at which stage the genetic background could impact resistance or durability. We propose that the genetic background may impair effector-triggered dominant resistances at several stages by tinkering the NB-LRR (Nucleotide Binding-Leucine-Rich Repeats) response pathway. In contrast, effects on recessive resistances by loss-of-susceptibility—such as eIF4E-based resistances—are more likely to rely on gene redundancy among the multigene family of host susceptibility factors. Finally, we show how the genetic background is likely to shape the evolution of resistance-breaking isolates and propose how to take this into account in order to breed plants with increased resistance durability to viruses.


Sign in / Sign up

Export Citation Format

Share Document