scholarly journals Moderate Salinity Stress Affects Expression of Main Sugar Metabolism and Transport Genes and Soluble Carbohydrate Content in Ripe Fig Fruits (Ficus carica L. cv. Dottato)

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1861
Author(s):  
Anna Mascellani ◽  
Lucia Natali ◽  
Andrea Cavallini ◽  
Flavia Mascagni ◽  
Giovanni Caruso ◽  
...  

Fig trees (Ficus carica L.) are commonly grown in the Mediterranean area, where salinity is an increasing problem in coastal areas. Young, fruiting plants of cv. Dottato were subjected to moderate salt stress (100 mM NaCl added to irrigation water) for 48 days before fruit sampling. To clarify the effect of salinity stress, we investigated changes in the transcription of the main sugar metabolism-related genes involved in the synthesis, accumulation and transport of soluble carbohydrates in ripe fruits by quantitative real-time PCR as well as the content of soluble sugars by quantitative 1H nuclear magnetic resonance spectroscopy. A general increase in the transcript levels of genes involved in the transport of soluble carbohydrates was observed. Alkaline-neutral and Acid Invertases transcripts, related to the synthesis of glucose and fructose, were up-regulated in ripe fruits of NaCl-stressed plants without a change in the content of D-glucose and D-fructose. The increases in sucrose and D-sorbitol contents were likely the result of the up-regulation of the transcription of Sucrose-Synthase- and Sorbitol-Dehydrogenase-encoding genes.

HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2169-2177 ◽  
Author(s):  
Karen Mesa ◽  
Sara Serra ◽  
Andrea Masia ◽  
Federico Gagliardi ◽  
Daniele Bucci ◽  
...  

Annual accumulation of starch is affected by carbon reserves stored in the organs during the growing season and is controlled mainly by sink strength gradients within the tree. However, unfavorable environmental conditions (e.g., hail events) or application of management practices (e.g., defoliation to enhance overcolor in bicolor apple) could influence the allocation of storage carbohydrates. This preliminary research was conducted to determine the effects of early defoliation on the dry matter, starch, and soluble carbohydrate dynamics in woody organs, roots, and mixed buds classified by age and two levels of crop-load for one growing season in ‘Abbé Fétel’ pear trees (Oct. 2012 to mid-Jan. 2013 in the northern hemisphere). Regardless of the organs evaluated (woody organs, roots, and mixed buds), an increase of soluble carbohydrate concentration was observed in these organs in the period between after harvest (October) and January (dormancy period). Among all organs, woody short-old spurs showed the highest increase (+93.5%) in soluble sugars. With respect to starch, woody organs showed a clear trend of decreasing in concentration between October and January. In this case, short-old spurs showed the smallest decline in starch concentrations, only 6.5%, whereas in other tree organs starch decreased by 34.5%. After harvest (October), leaves showed substantially higher starch and soluble sugar concentrations in trees with lower crop-loads. These results confirm that in the period between October and January, dynamic interconversions between starch and soluble carbohydrates occur at varying magnitudes among organs in pear trees.


1975 ◽  
Vol 53 (19) ◽  
pp. 2198-2201 ◽  
Author(s):  
D. G. Green ◽  
C. D. Ratzlaff

Soluble carbohydrate patterns of two hardy winter wheat cultivars and two less hardy cultivars were compared during the cold-hardening process. Soluble carbohydrates increased in concentration as the seedlings developed and the cold-hardening process occurred. The largest soluble carbohydrate differentials between the hardy and less hardy winter wheat cultivars occurred in the sucrose and raffinose fractions. The accumulation of sucrose and raffinose in wheat growing at 7.2 °C–0.5 °C day–night was greater in the two less hardy winter wheat cultivars. An inverse relationship existed between soluble sugars and cold hardiness in the four cultivars studied.


2019 ◽  
Vol 124 (4) ◽  
pp. 653-674 ◽  
Author(s):  
Evangelia Stavridou ◽  
Richard J Webster ◽  
Paul R H Robson

Abstract Background and Aims Water deficit and salinity stresses are often experienced by plants concurrently; however, knowledge is limited about the effects of combined salinity and water deficit stress in plants, and especially in C4 bioenergy crops. Here we aim to understand how diverse drought tolerance traits may deliver tolerance to combinations of drought and salinity in C4 crops, and identify key traits that influence the productivity and biomass composition of novel Miscanthus genotypes under such conditions. Methods Novel genotypes used included M. sinensis and M. floridulus species, pre-screened for different drought responses, plus the commercial accession Miscanthus × giganteus (M×g.). Plants were grown under control treatments, single stress or combinations of water deficit and moderate salinity stress. Morphophysiological responses, including growth, yield, gas exchange and leaf water relations and contents of proline, soluble sugars, ash and lignin were tested for significant genotypic and treatment effects. Key Results The results indicated that plants subjected to combined stresses showed more severe responses compared with single stresses. All novel drought-tolerant genotypes and M×g. were tolerant to moderate salinity stress. Biomass production in M. sinensis genotypes was more resilient to co-occurring stresses than that in M×g. and M. floridulus, which, despite the yield penalty produced more biomass overall. A stay-green M. sinensis genotype adopted a conservative growth strategy with few significant treatment effects. Proline biosynthesis was species-specific and was triggered by salinity and co-occurring stress treatments, mainly in M. floridulus. The ash content was compartmentalized differently in leaves and stems in the novel genotypes, indicating different mechanisms of ion accumulation. Conclusions This study highlights the potential to select novel drought-tolerant Miscanthus genotypes that are resilient to combinations of stress and is expected to contribute to a deeper fundamental knowledge of different mechanistic responses identified for further exploitation in developing resilient Miscanthus crops.


1979 ◽  
Vol 59 (4) ◽  
pp. 1093-1098 ◽  
Author(s):  
A. JABBAR MUZTAR ◽  
S. J. SLINGER ◽  
J. H. BURTON

An investigation was conducted on the levels of carotenoids, soluble carbohydrates and starch in several freshwater plants indigenous to Chemung Lake and Lake Ontario. Carotenoids and carbohydrates were analyzed in washed plant materials. Levels of carotene and xanthophyll varied greatly with species. However, essentially all the aquatics contained considerably higher amounts of both carotene and xanthophyll than did alfalfa or corn gluten meal. The dihydroxy pigment (DHP) was the predominant xanthophyll isomer, being in the range of 70–80% of the total xanthophyll content in most species. The monohydroxy pigment (MHP) was present in minor amounts. The DHP equivalent (DHPE), calculated as 1/2MHP+DHP, indicated that about 80–85% of the xanthophylls in the aquatic macrophytes should be biologically available in imparting color to fat and skin of poultry. Lemna minor and a sample of mixed plant species contained essentially equal proportions of soluble sugars and starch, while the proportions varied in the remaining species. The sum of soluble carbohydrates and starch in most investigated species ranged between 8 and 11%. This level is too low for adequate fermentation during the ensiling process and thus the aquatic plants would need supplementation with a rich source of soluble carbohydrate.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1313
Author(s):  
Md. Jahirul Islam ◽  
Byeong Ryeol Ryu ◽  
Md. Obyedul Kalam Azad ◽  
Md. Hafizur Rahman ◽  
Md. Soyel Rana ◽  
...  

The effect of exogenously applied putrescine (Put) on salt stress tolerance was investigated in Panax ginseng. Thirty-day-old ginseng sprouts were grown in salinized nutrient solution (150 mM NaCl) for five days, while the control sprouts were grown in nutrients solution. Putrescine (0.3, 0.6, and 0.9 mM) was sprayed on the plants once at the onset of salinity treatment, whereas control plants were sprayed with water only. Ginseng seedlings tested under salinity exhibited reduced plant growth and biomass production, which was directly interlinked with reduced chlorophyll and chlorophyll fluorescence due to higher reactive oxygen species (hydrogen peroxide; H2O2) and lipid peroxidation (malondialdehyde; MDA) production. Application of Put enhanced accumulation of proline, total soluble carbohydrate, total soluble sugar and total soluble protein. At the same time, activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase in leaves, stems, and roots of ginseng seedlings were increased. Such modulation of physio-biochemical processes reduced the level of H2O2 and MDA, which indicates a successful adaptation of ginseng seedlings to salinity stress. Moreover, protopanaxadiol (PPD) ginsenosides enhanced by both salinity stress and exogenous Put treatment. On the other hand, protopanaxatriol (PPT) ginsenosides enhanced in roots and reduced in leaves and stems under salinity stress condition. In contrast, they enhanced by exogenous Put application in all parts of the plants for most cases, also evidenced by principal component analysis. Collectively, our findings provide an important prospect for the use of Put in modulating salinity tolerance and ginsenosides content in ginseng sprouts.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Ragab S. Taha ◽  
Mahmoud F. Seleiman ◽  
Bushra Ahmed Alhammad ◽  
Jawaher Alkahtani ◽  
Mona S. Alwahibi ◽  
...  

Salinity is one of the most severe environmental stresses that negatively limits anatomical structure, growth and the physiological and productivity traits of field crops. The productivity of lupine plants is severely restricted by abiotic stress, particularly, salinity in arid and semiarid regions. Activated yeast extract (AYE) can perform a vital role in the tolerance of environmental stress, as it contains phytohormones and amino acids. Thus, field experiments were conducted to explore the potential function of active yeast extract (0, 50, 75, and 100 mL AYE L−1) in mitigating the harmful impacts of salinity stress (EC = 7.65 dS m−1) on anatomical structure, growth, and the physiological and productivity traits of two lupine cultivars: Giza 1 and Giza 2. The different AYE treatments resulted in a substantial improvement in studied attributes, for example the growth, anatomical, physiological characteristics, and seed yields of treated lupine cultivars compared with untreated plants. Among the AYE doses, 75 mL L−1 significantly improved plant growth, leaf photosynthetic pigments, total soluble sugars, total protein, and seed yields, and exposed the best anatomical attributes of the two lupine cultivars grown under saline stress. The exogenous application of 75 mL AYE L−1 was the most influential, and it surpassed the control results by 45.9% for 100-seed weight and 26.9% for seed yield per hectare. On the other hand, at a concentration of 75 mL L−1 AYE there was a decrease in the alkaloids and endogenous proline under the studied salinity stress conditions. Promoted salinity stress tolerance through sufficient AYE dose is a hopeful strategy to enhance the tolerance and improve productivity of lupine into salinity stress. Furthermore, the response of lupine to salinity stress appears to rely on AYE dose. The results proved that Giza 2 was more responsive to AYE than Giza 1, showing a better growth and higher yield, and reflecting further salinity tolerance than the Giza 1 cultivar.


2021 ◽  
Vol 27 (1) ◽  
pp. 107-117
Author(s):  
Monther T. Sadder ◽  
Ibrahim Alshomali ◽  
Ahmad Ateyyeh ◽  
Anas Musallam

1966 ◽  
Vol 66 (3) ◽  
pp. 351-357 ◽  
Author(s):  
W. Ellis Davies ◽  
G. ap Griffith ◽  
A. Ellington

The primary growth of eight varieties of three species–white clover (3), red clover (4) and lucerne (1)–was sampled at fortnightly intervals and the percentage dry matter, in vitro digestibility, crude protein, water soluble carbohydrates, P, Ca, K, Na and Mg were determined.Differences between species were nearly always significant and the general order of merit was white clover, red clover and lucerne. The exceptions were for dry-matter percentage where this order was reversed, and red clover had the lowest Na and highest Mg content.


2016 ◽  
Vol 2 (1) ◽  
pp. 61-65 ◽  
Author(s):  
V. Melo-Ruíz ◽  
K. Sánchez-Herrera ◽  
H. Sandoval-Trujillo ◽  
R. Díaz-García ◽  
T. Quirino-Barreda

Escamoles, ant eggs (Liometopum apiculatum M), are edible insects consumed in great numbers and appreciated for their sensory characteristics, but not for their nutritional value. In Mexico, they reproduce in arid and semi-arid zones of Mexico and several states (Puebla, Tlaxcala, Hidalgo). Samples were gathered to determine reproduction conditions and perform an insect analysis to generate data composition in macronutrients, on dry basis, according to AOAC methods. The obtained data were: proteins: 42.12-50.63%; lipids: 30.27-34.96%; minerals: 6.53-7.85%; fibres: 1.91-2.56%; and soluble carbohydrates: 6.80-18.27%. Entomological material was collected in spring 2014, 3 nests for each zone, all from different altitudes and agroclimatic regions. Samples were representative for the insect supply in the areas studied. Insects are high in proteins and lipids, compared with most of the commonly consumed food, due to their high content of fatty acids; they must be refrigerated for later consumption. Minerals are moderated. Fibre and soluble carbohydrate levels are low, but an excess of proteins can be converted into carbohydrates via gluconeogenesis. Escamoles reproduce once a year in the spring, but sometimes one nest can provide escamoles eggs twice in the same season, once at the beginning and again at the end, depending on the biotic and abiotic conditions of their environment. Escamoles are a good source of nutrients; however, some rural people sell them to obtain extra income rather than consume them to improve their nutritional condition and welfare.


2011 ◽  
Vol 79 (1) ◽  
pp. 21-25
Author(s):  
Agnieszka I. Piotrowicz-Cieślak ◽  
Maciej Niedzielski ◽  
Dariusz J. Michalczyk ◽  
Wiesław Łuczak ◽  
Barbara Adomas

Germinability and the content of soluble carbohydrates were analysed in cereal seed (winter rye, cv. Warko; spring wheat, cv. Santa; hexaploid winter triticale, cv. Fidelio and cv. Woltario). Seed moisture content (mc) was equilibrated over silica gel to 0.08 g H<sub>2</sub>O/g dry mass and stored in a desiccator at 20<sup>o</sup>C for up to 205 weeks or were equilibrated to mc 0.06, 0.08 or 0.10 g H<sub>2</sub>O/g dm and subjected to artificial aging at 35<sup>o</sup>C in air-tight laminated aluminium foil packages for 205 weeks. It was shown that the rate of seed aging depended on the species and seed moisture content. The fastest decrease of germinability upon storage was observed in seed with the highest moisture level. Complete germinability loss for winter rye, winter triticale cv. Fidelio, winter triticale cv. Woltario and spring wheat seed with mc 0.10 g H<sub>2</sub>O/g dm<sup>3</sup> occurred after 81, 81, 101 and 133 weeks, respectively. Fructose, glucose, galactose, myo-inositol, sucrose, galactinol, raffinose, stachyose and verbascose were the main soluble carbohydrates found in the seed. The obtained data on the contents of specific sugars and the composition of soluble sugars fraction in seed of rye, wheat and triticale did not corroborate any profound effect of reducing sugars, sucrose and oligosaccharides on seed longevity.


Sign in / Sign up

Export Citation Format

Share Document