scholarly journals Effects of Light Condition on Growth and Physiological Characteristics of the Endangered Species Sedirea japonica under RCP 6.0 Climate Change Scenarios

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1891
Author(s):  
Kyeong Cheol Lee ◽  
Jiae An ◽  
Jung Eun Hwang ◽  
Pyoung Beom Kim ◽  
Hyeong Bin Park ◽  
...  

This study was conducted to evaluate the physiological and growth responses of Sedirea japonica cultured in chambers under RCP 6.0 and different light conditions. S. japonica was grown in a soil–plant daylight system chamber under two treatments, a control (CO2 = 400 ppm) and a climate change treatment (CCT) (CO2 = 650 ppm, temperature = control + 3 °C), and three different shading treatments (60%, 90%, and no-shading). S. japonica showed the characteristics of typical Crassulacean acid metabolism (CAM) plants. As the shading rate increased, it increased chlorophyll content, leaf area, and leaf dry weight to efficiently absorb and use light. The CCT had a lower CO2 absorption rate, stomatal conductance, and growth rate and slightly higher water utilization efficiency than the control. This was because stomatal closure occurred in the CCT to reduce water loss due to a relatively higher temperature. As CO2 fixation decreased and consumption increased due to respiration, the overall growth was inhibited. The CCT without shading revealed a dynamic photoinhibition phenomenon showing a significant increase in ABS/RC, TRo/RC, ETo/RC, and DIo/RC and a decrease in PI ABS and DF ABS. In this group, leaf, root, and total dry weight, chlorophyll content, and carotenoid content were the worst growth indices.

1967 ◽  
Vol 13 (10) ◽  
pp. 1343-1349 ◽  
Author(s):  
R. Rodriguez-Kabana ◽  
E. A. Curl ◽  
H. H. Funderburk Jr.

The effect of atrazine (2-chloro-4-ethylamino-6-isopropylamino-.s-triazine) on growth of Sclerotium rolfsii and Trichoderma viride was studied in liquid culture. The fungi were grown in Czapek solution containing 0, 8, 20, 40, and 80 μg of the herbicide per milliliter, and growth responses were measured at intervals of 3–5 days after inoculation. Mycelial dry weight of S. rolfsii was little affected at concentrations below 40 μg/ml, but was decreased at the higher concentrations. Total mycelium produced by T. viride was greater with all atrazine treatments than in the control. For S. rolfsii, the efficiency of utilization (economic coefficient) of glucose, inorganic P, and NO3-N with atrazine at 8 μg/ml was slightly higher than that of the control, but was significantly reduced at higher concentrations. Values for glucose utilization efficiency in T. viride increased with herbicide at 8 and 20 μg/ml, then decreased considerably at other concentrations, but remained higher than the control; a similar pattern was revealed for P and NO3-N utilization. Titratable acidity in the medium increased for both fungi with increased atrazine concentration.


HortScience ◽  
1991 ◽  
Vol 26 (11) ◽  
pp. 1371-1374 ◽  
Author(s):  
Cary A. Mitchell ◽  
Tina Leakakos ◽  
Tameria L. Ford

This study evaluated the potential of high photosynthetic photon flux (PPF) from high-pressure sodium (HPS) lamps, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce growth, with or without N supplementation. Varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown `Black-Seeded Simpson' lettuce (Lactuca sativa L.) seedlings. Cumulative leaf dry weight declined with increasing exposure, up to 20 hours per day, to 660 μmol·m-2·s-1 of photosynthetically active radiation (PAR) from HPS lamps concomitant with constant 20 hours per day of 400 m mol·m-2·s-1 from MH + QI lamps. Leaves progressively yellowed with increasing exposure to radiation from the three-lamp combination, corresponding to lower specific chlorophyll content but not to specific carotenoid content. Lettuce grown under 20-hour photoperiods of 400, 473, or 668 μmolm·m-2·s-1 from HPS radiation alone had the highest leaf dry weight at a PPF of 473 μmol·m-2·s-1. Chlorophyll, but not carotenoid specific content, decreased with each incremental increase in PPF from HPS lamps. Doubling the level of N in nutrient solution and supplying it as a combination of NH4+ and NO3- partially ameliorated adverse effects of high PPF on growth and pigment content relative to treatments using single-strength N as NO3–.


2005 ◽  
Vol 360 (1463) ◽  
pp. 2149-2154 ◽  
Author(s):  
Lin Erda ◽  
Xiong Wei ◽  
Ju Hui ◽  
Xu Yinlong ◽  
Li Yue ◽  
...  

A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 °C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO 2 ) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20–80 years. Interactions of CO 2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO 2 enrichment under field conditions consistently increases biomass and yields in the range of 5–15%, with CO 2 concentration elevated to 550 ppm Levels of CO 2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO 2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications.


2002 ◽  
Vol 57 (1-2) ◽  
pp. 135-143 ◽  
Author(s):  
Huming Li ◽  
Alfons Radunz ◽  
Ping He ◽  
Georg H. Schmid

Cultivation of the climbing plant Dioscorea zingiberensis at a light intensity of 100 μE · m-2 · sec-1 yields three different phenotypes. Most of the plants grow as green phenotype (DzW). Two further forms differ in their leaf shape and leaf color. Whereas one type exhibits a more pointed leaf shape in the upper part of the plant with leaves appearing yellow-green with white stripes or hatchings (DzY), the other type shows a more round leaf shape with an intensive yellow-green color (DzT). These three plant types differ in their diosgenin content not only in their rhizomes but also in the chloroplasts. In the rhizomes the diosgenin content in the green form is 0.4%, in the DzY-form 0.6% and in the DzT-form even 1.3% of the dry weight. Furthermore, even in chloroplasts of the green DzW-form and of the DzY-form the presence of diosgenin was demonstrated. It occurs there as the epimeric form yamogenin. The DzT-form contains no yamogenin in its chloroplasts. Besides this, these plant forms differ in their chlorophyll and carotenoid content and in their fatty acid composition. Carotenoids increase from 1.3% of total lipids in the green phenotype to 3.3% in the DzYand to 4.2% in the DzT-form. This increase refers to _-carotene as well as to lutein and neoxanthin. The chlorophyll content in the green type is 8.1% and lower in the DzY-form with 7%. The highest chlorophyll content is found in the DzT-form with 12%. Fatty acids in the DzY-form and in the DzT-form have a more unsaturated character than in the green phenotype. The content of the monoenoic acid trans-hexadecenoic acid is considerably lower in both phenotypes when compared to the green phenotype. In both phenotypes the quantity of fatty acids with 16 carbon atoms is reduced, whereas fatty acids with 18 carbon atoms occur in higher concentration. Cultivation of the green phenotype (DzW) at the three light intensities of 10, 100 and 270 μE · m-2 · sec-1 leads to changes of the diosgenin content in rhizomes, to an increase of leaf dry weight, to a reduction of the grana structure in chloroplasts and therewith to a decrease of the chlorophyll content. The total lipid content is highest under the cultivation at 100 μE · m-2 · sec-1 and reduced by 30% at 10 and 270 μE · m-2 · sec-1. Carotenoids, however, are highest in shaded plants (10 μE · m-2 · sec-1) and plants grown under high light conditions of 270 μE · m-2 · sec-1. At 100 μE · m-2 · sec-1 a decrease of saturated fatty acids is observed in comparison to plants grown under shaded conditions.


2016 ◽  
Vol 26 (5) ◽  
pp. 647-650
Author(s):  
Jong-Goo Kang ◽  
Rhuanito Soranz Ferrarezi ◽  
Sue K. Dove ◽  
Geoffrey M. Weaver ◽  
Marc W. van Iersel

Abscisic acid (ABA) is a plant hormone involved in regulating stomatal responses to environmental stress. By inducing stomatal closure, applications of exogenous ABA can reduce plant water use and delay the onset of drought stress when plants are not watered. However, ABA can also cause unwanted side effects, including chlorosis. Pansy (Viola ×wittrockiana) has been shown to be particularly susceptible to ABA-induced chlorosis. The objective of this study was to determine if fertilization rate affects the severity of ABA-induced chlorosis in this species. ‘Delta Premium Pure Yellow’ pansy seedlings were fertilized with controlled-release fertilizer incorporated at rates from 0 to 8 g·L−1 of substrate. When plants had reached a salable size, half the plants were sprayed with a solution containing 1 g·L−1 ABA, whereas the other plants were sprayed with water. Leaf chlorophyll content was monitored for 2 weeks following ABA application. Leaf chlorophyll content increased greatly as fertilizer rate increased from 0 to 2 g·L−1, with little increase in leaf chlorophyll at even higher fertilizer rates. ABA induced chlorosis, irrespective of the fertilizer rate. Plant dry weight was lowest when no controlled-release fertilizer was incorporated, but similar in all fertilized treatments. ABA treatment reduced shoot dry weight by ≈24%, regardless of fertilization rate. This may be due to ABA-induced stomatal closure, which limits carbon dioxide (CO2) diffusion into the leaves. We conclude that ABA sprays induce chlorosis, regardless of which fertilizer rate is used. However, because leaf chlorophyll concentration increases with increasing fertilizer rates, higher fertilizer rates can mask ABA-induced chlorosis.


2020 ◽  
Vol 17 (2) ◽  
pp. 41
Author(s):  
BAHARUDIN BAHARUDIN ◽  
M.R. SUHARTANTO ◽  
S. ILYAS ◽  
A. PURWANTARA

<p>ABSTRAK</p><p>Program pengembangan dan rehabilitasi tanaman kakao membutuh-kan benih bermutu. Mutu benih antara lain ditentukan oleh saat panenyang tepat, terutama berhubungan dengan masak fisiologis. Beberapaindikator penting yang berkaitan dengan masak fisiologis benih adalahkarakteristik biologis dan fisiologis. Penelitian telah dilaksanakan diKebun Induk Benih Pusat Penelitian Kopi dan Kakao (Puslitkoka) Jember,Laboratorium Fisika dan Laboratorium Ilmu dan Teknologi Benih IPB,serta Rumah Kaca Balai Penelitan Bioteknologi Perkebunan Indonesia,Bogor pada bulan Februari-September 2008. Penelitian ini bertujuan untuk(1) mempelajari perubahan biologis dan fisiologis selama perkembanganbenih kakao hibrida, (2) mengetahui hubungan antar berbagai karakterbiologis dan fisiologis benih yang mencerminkan mutu benih, dan (3)menentukan saat panen yang tepat benih kakao hibrida TSH 858 xSca 6 dan ICS 60 x Sca 6. Benih yang digunakan berasal dari hasilpersilangan buatan antara kakao TSH 858 x Sca 6 dan ICS 60 x Sca 6.Umur panen benih yang digunakan dalam penelitian adalah 120, 135, 150,165, dan 180 hari yang dihitung saat setelah antesis, dan setiappengamatan diulang 4 kali. Analisis data disajikan dalam bentuk grafikdengan data primer ditambah standar deviasi dalam program Excel danuntuk mengetahui hubungan dari masing-masing karakter mutu benihdilakukan ”analisis path” menggunakan SAS dari Windows v 9.1. Hasilpenelitian menunjukkan dua fase perkembangan benih. Fase perkem-bangan hingga masak fisiologis (fase 1) dan fase setelah masak fisiologis(fase 2) kakao hibrida TSH 858 x Sca 6 dan ICS 60 x Sca 6. Masakfisiologis benih kakao hibrida TSH 858 x Sca 6 tercapai pada saat 150HSA dan ICS 60 x Sca 6 pada 165 HSA. Daya kecambah, indeks vigor,K CT -R, T 50 , bobot basah dan bobot kering benih, karotenoid dan antosianinbenih dan buah, jumlah daun, dan tinggi bibit dari benih kakao hibridaTSH 858 x Sca 6 dan ICS 60 x Sca 6 mencapai maksimum pada saatmasak fisiologis dan menurun pada fase kedua. Selama periodeperkembangan benih terjadi penurunan total klorofil benih dan buah,sedangkan warna buah kuning mengalami peningkatan. Karakter yangberhubungan langsung dengan mutu benih pada saat masak fisiologisbenih kakao hibrida TSH 858 x Sca 6 dan ICS 60 x Sca 6 adalah warnabuah kuning, indeks vigor, total klorofil benih dan buah, karotenoid danantosianin benih, T 50 , tinggi bibit, K CT -R, dan bobot kering benih.</p><p>Kata kunci: Theobroma cacao, biologi benih, fisiologi benih, karakteristikbenih, mutu benih</p><p>ABSTRACT</p><p>Biological and Physiological Changes as Indicator ofMaturity of Hybrid Cacao Seed</p><p>The development and rehabilitation programs of cacao need highquality seeds. The high quality of cacao seeds is influenced by seedsphysiological maturity and harvesting time. Several important indicatorsrelated to the seed physiological maturity are biological and physiologicalcharacters. The research objectives were: (1) to study biological andphysiological changes during of seed development, (2) to study on thecorrelation of various characteristics related with seeds physiology andquality, (3) to determine the most appropriate harvesting time for hybridcacao seed of TSH 858 x Sca 6 and ICS 60 x Sca 6. The research wasconducted at Coffee and Cacao Research Institute of Indonesia(Puslitkoka) in Jember, IPB Biophysics and Seeds and TechnologyLaboratory and Biotechnology Research Institute for Estate CropsIndonesia glass house in Bogor from February to September 2008. Theseeds were originated from hand pollination of TSH 858 vs Sca 6 and ICS60 vs Sca 6 hybrids from Puslitkoka Jember. The seeds for this researchwere harvested on: 120, 135, 150, 165, and 180 days after anthesis (DAA);with four replications each. Data were analyzed and presented as graphs,standard deviation in excel; while the relationship of each character ofseeds quality was determined using path analysis by SAS for Windows v.9.1. The results showed that the seed physiological changed on two phasesduring its development. The first phase started from seeds development upto physiological maturity for TSH 858 x Sca 6 and as well ICS 60 x Sca 6hybrids, and second phases started after physiological maturity. Thephysiological maturity of each seeds is 150 DAA for TSH 858 x Sca 6 and165 DAA for ICS 60 x Sca 6 hybrids. Seed germination percentage, vigorindex, germination rate (K CT -R and T 50 ), wet and dry weight of seed, seedsand fruits carotenoid content, seed and fruit anthocyanin content, numberof leaves, and height of seedling reached maximum when seed achievedphysiological maturity and decreased afterward. During seed development,there was decreasing of seeds and fruits chlorophyll content and increasedfor the yellow color of fruit. The characters which showed directcorrelation with seeds quality during seed development of TSH 858 x Sca6 and ICS 60 x Sca 6 hybrids are: yellow color of fruit, vigor index,chlorophyll content for seeds and fruit, seed carotenoid and anthocyanincontent, germination rate (T 50, K CT -R), seedling height and seed dry weight.</p><p>Key words: Theobroma cacao, seed biological, seed physiological, seedcharacteristic, seed quality</p>


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1732-1735 ◽  
Author(s):  
Hassan Salehi ◽  
Morteza Khosh-Khui

Turfgrass seeds can be sown individually, in mixes, or overseeded to provide green color and uniform surfaces in all the seasons. This investigation was conducted to compare different turfgrass species and their seed mixtures. In this research, the turfgrasses—perennial ryegrass (Lolium perenne L. `Barball'), kentucky bluegrass (Poa pratensis L. `Merion'), common bermudagrass (Cynodon dactylon [L.] Pers.), and strong creeping red fescue (Festuca rubra L. var. rubra `Shadow')—in monoculture or in mixtures of 1:1 (by weight) and a 1:1:1:1 (by weight) and two sport turfgrasses—BAR 11 (Barenbrug Co.) and MM (Mommersteeg Co.)—were used. The seeds were sown in March and October (spring and fall sowing) in 1998 and 1999. The experiments were conducted in a split-split block design with year as main plot, sowing season as subplot, and turfgrass types as subsubplot. The turfgrasses were compared by measuring visual quality, chlorophyll index after winter and summer, rooting depth, verdure and/or root fresh and dry weight, tiller density, and clippings fresh and dry weight. Fall sowing was superior to spring sowing and resulted in greater root growth, clipping yield, and chlorophyll content. Poa+Cynodon seed mixture was the best treatment and had high tiller density, root growth, and chlorophyll content. Lolium and Festuca monocultures, and Poa+Festuca and Cynodon+Festuca seed mixtures were not suitable with regard to low tiller density, sensitivity to high temperatures, low root growth, and low tiller density, respectively. The cool-warm-season seed mixture (Poa+Cynodon) can be used alternatively in overseeding programs in the areas with soil and environmental conditions similar to this research site.


2005 ◽  
Vol 3 (1) ◽  
pp. 7-10
Author(s):  
SRI WAHYUDYANA HURIP PRADNYAWAN ◽  
WIDYA MUDYANTINI ◽  
MARSUSI MARSUSI

The objectives of this research were to find out the influence and optimal different shading on growth, nitrogen, carotenoid, and chlorophyll content of Gynura procumbens leaf. Research was carried out in the greenhouse of Faculty of Agriculture Sebelas Maret University and Central Laboratory Sebelas Maret University Surakarta, in June until October 2003. Completely randomized design with single factor was used as follow: 0%, 40%, and 70% shading with 10 replications each treatment. Observation including growth parameters (plant height, surface leaf’s area, dry weight) and the contents of nitrogen, chlorophyll, and carotenoid. Data collected were analyzed using analysis of variance (ANOVA) followed by DMRT test at 5% confidence level and regression test. The result indicated that 40% shading had proven to increase growth parameters, 70% shading giving significant effect on nitrogen and chlorophyll content, while 0% shading showed to increase carotenoid content.


2005 ◽  
Vol 33 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Csilla Farkas ◽  
Roger Randriamampianina ◽  
Juraj Majerčak

Sign in / Sign up

Export Citation Format

Share Document