scholarly journals Comparative Transcriptomic Analysis Provides Novel Insights into the Blanched Stem of Oenanthe javanica

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2484
Author(s):  
Sunjeet Kumar ◽  
Xinfang Huang ◽  
Gaojie Li ◽  
Qun Ji ◽  
Kai Zhou ◽  
...  

In the agricultural field, blanching is a technique used to obtain tender, sweet, and delicious water dropwort stems by blocking sunlight. The physiological and nutritional parameters of blanched water dropwort have been previously investigated. However, the molecular mechanism of blanching remains unclear. In the present study, we investigated transcriptomic variations for different blanching periods in the stem of water dropwort (pre, mid, post-blanching, and control). The results showed that many genes in pathways, such as photosynthesis, carbon fixation, and phytohormone signal transduction as well as transcription factors (TFs) were significantly dysregulated. Blanched stems of water dropwort showed the higher number of downregulated genes in pathways, such as photosynthesis, antenna protein, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism, which ultimately affect the photosynthesis in water dropwort. The genes of hormone signal transduction pathways (ethylene, jasmonic acid, brassinosteroid, and indole-3-acetic acid) showed upregulation in the post-blanched water dropwort plants. Overall, a higher number of genes coding for TFs, such as ERF, BHLH, MYB, zinc-finger, bZIP, and WRKY were overexpressed in blanched samples in comparison with the control. These genes and pathways participate in inducing the length, developmental processes, pale color, and stress tolerance of the blanched stem. Overall, the genes responsive to blanching, which were identified in this study, provide an effective foundation for further studies on the molecular mechanisms of blanching and photosynthesis regulations in water dropwort and other species.

2020 ◽  
Vol 48 (3) ◽  
pp. 1613-1636
Author(s):  
Gang LI ◽  
Qiusheng FU ◽  
Zhongbin LIU ◽  
Jiabao YE ◽  
Weiwei ZHANG ◽  
...  

Populus deltoides ‘DanHongYang’ (DHY) was identified as a waterlogging-resistant cultivar in our previous study. Here, the phenotype, physiological features and transcriptome profiling of P. deltoides ‘DHY’ between the treatments of waterlogging and control were compared. Waterlogging treatment led to distinctly formation of adventitious roots from P. deltoides ‘DHY’ stems. The activities of ascorbate peroxidase and glutathione reductase significantly increased in the leaves of P. deltoides ‘DHY’ by waterlogging treatment. Comparative transcriptomic analysis showed that 2,447 and 9,465 differentially expressed genes (DEGs) were screened between the leaves and roots of P. deltoides ‘DHY’ under waterlogging and control, respectively. The KEGG analysis showed the most significantly up-regulated DEGs in the leaves and roots were enriched to the pathways of glycolyis and proline synthesis. Some genes involved in stress response, endogenous hormones, antioxidant system and adventitious root development in the waterlogged were identified to contribute to the waterlogging tolerance of P. deltoides ‘DHY’. In addition, some candidate transcription factors such as RAP, NAC, WRKY, and bHLH were also found to be associated with the waterlogging tolerance of P. deltoides ‘DHY’. These findings provided the insights into the physiological and molecular mechanisms underlying the tolerance of P. deltoides ‘DHY’ to waterlogging stresses.


2021 ◽  
Author(s):  
Yuqing Feng ◽  
Yuanyuan Zhao ◽  
Yafei Li ◽  
Jun Zhou ◽  
Yujing Li ◽  
...  

Abstract Nitrate is an important precursor of tobacco-specific nitrosamines (TSNAs) and remarkable difference in nitrate accumulation between lamina and midrib of flue-cured tobacco has long been observed. However, the physiological and molecular mechanisms underpinning this difference remain poorly understood. In this study, physiological and genetic factors impacting nitrate accumulation were identified in pot experiments using flue-cured tobacco K326 with contrasting nitrate content between lamina and midrib. The results showed that three times higher of NO3-N content was observed in midrib than that in lamina, along with lower pigment, NH4-N content, NRA, SSA and GSA in midrib. Transcriptome analysis revealed that expression of genes involved in porphyrin and chlorophyll metabolism, carotenoid biosynthesis, photosynthesis-antenna proteins, photosynthesis, carbon fixation in photosynthetic organisms, starch and sucrose metabolism, nitrogen metabolism and biosynthesis of amino acids were significantly lower in midrib than in lamina. qRT-PCR results showed that the expression level of nitrate transporter genes LOC107782967, LOC107806749, LOC107775674, LOC107829632, LOC107799198, LOC107768465 decreased by 2.74, 1.81, 49.5, 3.5, 2.64 and 2.96 folds while LOC107789301 increased by 8.23 folds in midrib but not in lamina. Reduced chlorophyll content might result in low carbohydrate formation which is the source of energy and carbon skeleton supply, then the low capacity of nitrogen reduction, assimilation and transportation, and the poor ability of nitrate reallocation but high capacity of accumulation might lead to nitrate accumulation in midrib. The results laid the foundation for reducing nitrate content and TSNA formation in tobacco midribs and their products.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weike Sun ◽  
Ning Ma ◽  
Hongyu Huang ◽  
Jingwei Wei ◽  
Si Ma ◽  
...  

Abstract Background Photosynthesis in the green leafless blade tissues or organs of plants has been studied in some plants, but the photosynthetic characteristics of stems and petioles are poorly understood. Cucurbitaceous plants are climbing plants that have substantial stem and petiole biomass. Understanding the photosynthetic contribution of cucumber stems and petioles to their growth and the underlying molecular mechanisms are important for the regulating of growth in cucumber production. Results In this study, the photosynthetic capacity of cucumber stems and petioles were determined by 14CO2 uptake. The total carbon fixed by the stems and petioles was approximately 4% of that fixed by one leaf blade in the cucumber seedling stage, while the proportion of the carbon accumulated in the stems and petioles that redistributed to sink organs (roots and shoot apexes) obviously increased under leafless conditions. The photosynthetic properties of cucumber stems and petioles were studied using a combination of electron microscopy and isotope tracers to compare these properties of stems and petioles with those of leaf blade using two genotypes of cucumber (dark green and light green). Compared with those of the leaf blades, the chlorophyll contents of the cucumber stems and petioles were lower, and the stems and petioles had lower chloroplast numbers and lower stoma numbers but higher thylakoid grana lamella numbers and larger stoma sizes. The Chl a/b ratios were also decreased in the petioles and stems compared with those in the leaf blades. The total photosynthetic rates of the stems and petioles were equivalent to 6 ~ 8% of that of one leaf blade, but the respiration rates were similar in all the three organs, with an almost net 0 photosynthetic rate in the stems and petioles. Transcriptome analysis showed that compared with the leaf blades, the stems and petioles has significantly different gene expression levels in photosynthesis, porphyrin and chlorophyll metabolism; photosynthetic antenna proteins; and carbon fixation. PEPC enzyme activities were higher in the stems and petioles than in the leaf blades, suggesting that the photosynthetic and respiratory mechanisms in stems and petioles are different from those in leaf blade, and these results are consistent with the gene expression data. Conclusions In this study, we confirmed the photosynthetic contribution to the growth of cucumber stems and petioles, and showed their similar photosynthetic patterns in the terms of anatomy, molecular biology and physiology, which were different from those of cucumber leaf blades.


2021 ◽  
Vol 25 (04) ◽  
pp. 863-872
Author(s):  
Yong Li

Photosynthetic characteristics and expression patterns of the photosynthesis-related genes in the high-yield mulberry variety E’Sang 1 (E1) and normal mulberry variety Husang 32 (H32) were investigated in this study. The observation of daily variation of photosynthesis in E1 and H32 indicated that the peak of net photosynthetic rate(Pn)inE1 variety was significantly higher than that inH32 (P <0.05). Meanwhile, the Pn-PAR and Pn-Ci responses of E1 and H32 were evaluated, and the results showed that the carboxylation efficiency and compensation saturation point were much higher in E1 rather thanH32. Importantly, the photosystem II actual photochemical efficiency and photochemical quenching coefficient in the leaves of E1 were significantly higher than those in H32 (P<0.05). Also, the activity of RuBP in E1 was higher than that in H32 (P >0.05). Based on the RNA-seq data, a total of 3,356 differentially expressed genes (DEGs) were detected among different time points between E1 and H32. Of these, 1,136 DEGs were involved in the metabolic pathways, including three main photosynthesis-related metabolic pathways (i.e., carbon fixation in photosynthetic organisms, carbon metabolism, and porphyrin and chlorophyll metabolism). Meanwhile, 10 novel DEGs related to photosynthesis were detected, and four potential key genes of them could account for the differences in net photosynthetic rate and yield betweenH32 and E1.This study could provide important insights into the molecular breeding of mulberry varieties with high photosynthetic efficiency and contribute to understanding the genetic mechanism of photosynthesis.© 2021 Friends Science Publishers


2021 ◽  
Author(s):  
Weike Sun ◽  
Ning Ma ◽  
Hongyu Huang ◽  
Jingwei Wei ◽  
Si Ma ◽  
...  

Abstract Background Photosynthesis of plant non-leaf blade green tissue has been studied in some plants, but the photosynthesis characteristics of stem and petiole are poorly understood. Cucurbitaceous plants are climbing plants, and have a large biomass of stem and petiole. Understanding the photosynthetic contribution of cucumber stem and petiole to growth and the underlying molecular mechanisms are important for the regulation of growth in cucumber production. Results Here, the photosynthetic capacity of cucumber stem and petiole were proved by 14CO2 uptake. The total carbon fixation of stem and petioles is around 4% to that of one leaf blade in cucumber seedling stage, while the proportion of carbon accumulated in stem and petioles redistributed to sink organs (root and growing point) is increased obviously under leaf less condition. Photosynthetic properties of cucumber stem and petiole were studied using a combination of electron microscopy, chlorophyll fluorescence imaging and isotope tracer to compare with leaf blade using two genotype of cucumber (dark green and light green stems). Compare with leaf blade, chlorophyll contents of cucumber stem and petiole are lower, and accompanying with lower chloroplast number, lower stoma number, but with higher thylakoid grana lamella number and larger stomata size. The total photosynthetic rate of stem and petiole is equivalent to 6 ~ 8% of one leaf blade, but the respiration rates were simiar in all the three tissues, which shown an almost 0 net photosynthetic rate in stems and petioles, and with lower non-photochemical quenching (NPQ). Transcriptome analysis showed that compared with leaf blade, there are significantly different gene expressions in photosynthesis, porphyrin and chlorophyll metabolism, photosynthetic antenna proteins and carbon fixation in stem and petiole. Although with lower Rubisco expression level in stem and petiole, Rubisco and PEPC enzyme activities were both higher in stem and petiole than in leaf blade, suggesting the photosynthetic and respiratory mechanisms in stem and petiole are different from those in leaf blade. Conclusions In this study, we confirmed the photosynthetic contribution to growth of cucumber stem and petiole, and shown their similar photosynthetic pattern in tissue anatomy, molecular biology and physiology.


2020 ◽  
Vol 10 (23) ◽  
pp. 8565
Author(s):  
Qiang Zhang ◽  
Yi Bai ◽  
Zhi Chen ◽  
Jiezhang Mo ◽  
Yulu Tian ◽  
...  

Lincomycin (LIN), as a waterborne contaminant, may pose a threat to algal health and may affect the provision of ecosystem services. In addition, the molecular mechanisms of lincomycin in algae are still unknown. Here, we attempted to use the transcriptome analysis to elucidate for the first time the potential impact of LIN at an environmentally relevant concentration on the algal growth, and verify the hypothesis that lincomycin can disrupt algal protein synthesis by combining with its subunits of ribosome at high-LIN level. In this study, 7-day growth inhibition tests and RNA-seq sequencing were conducted in Raphidocelis subcapitata (R. subcapitata) in response to a LIN at the concentrations of 0.5 µg L−1 (low), 5 µg L−1 (medium), and 400 µg L−1 (high) treatment groups. A negligible influence on algal growth and merely 21 (21 up- and 0 downregulated) differentially expressed genes (DEGs) was observed at low concentration of LIN, and medium groups showed a 13.4% inhibition and 92 (64 up- and 48 downregulated) DEGs, while high-LIN dosing caused 65.4% reduction in algal growth and 2514 (663 up- and 1851 downregulated) DEGs. In 0.5 and 5 µg L−1 groups, LIN upregulated the genes in the process of photosynthesis consisting of photosynthesis-antenna proteins, and porphyrin and chlorophyll metabolism pathways, suggesting that photosynthesis at low LIN exposure was more sensitive than algal growth. Whereas DEGs in the 400 µg L−1 group were mostly enriched in carbohydrate, carbon fixation in photosynthetic organisms, and nucleotide metabolism pathways. Furthermore, genes involved in detoxification processes were nearly downregulated in high-LIN group. In addition, genes encoding the antioxidant enzymes in the peroxisome pathway such as superoxide dismutase (sod2), peroxin-2 (pex2), 2,4-dienoyl-CoA reductase ((3E)-enoyl-CoA-producing) (decr2) were upregulated, which are responsible for deleting extra intracellular reactive oxygen species (ROS) caused by LIN to protect algal health, suggesting the occurrence of oxidative stress. Taken together, this is the first meticulous study unraveling the molecular mechanism of antibiotics in algae.


2020 ◽  
Vol 27 (2) ◽  
pp. 187-215 ◽  
Author(s):  
Lavinia Raimondi ◽  
Angela De Luca ◽  
Gianluca Giavaresi ◽  
Agnese Barone ◽  
Pierosandro Tagliaferri ◽  
...  

: Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. : Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. : In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.


2019 ◽  
Vol 16 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Tahereh Farkhondeh ◽  
Hanieh Shaterzadeh Yazdi ◽  
Saeed Samarghandian

Background: The therapeutic strategies to manage neurodegenerative diseases remain limited and it is necessary to discover new agents for their prevention and control. Oxidative stress and inflammation play a main role in the pathogenesis of neurodegenerative diseases. The aim of this study is to review the effects of green tea catechins against the Neurodegenerative Diseases. Methods: In this study, we extensively reviewed all articles on the terms of Green tea, catechins, CNS disorders, and different diseases in PubMed, Science Direct, Scopus, and Google Scholar databases between the years 1990 and 2017. Results: The present study found that catechins, the major flavonoids in green tea, are powerful antioxidants and radical scavengers which possess the potential roles in the management of neurodegenerative diseases. Catechins modulate the cellular and molecular mechanisms through the inflammation-related NF-&amp;#954;B and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Conclusion: The findings of the present review shows catechins could be effective against neurodegenerative diseases due to their antioxidation and anti-inflammation effects and the involved biochemical pathways including Nrf2 and NF-kB signaling pathways.<P&gt;


Sign in / Sign up

Export Citation Format

Share Document