scholarly journals 10,000-Times Diluted Doses of ACCase-Inhibiting Herbicides Can Permanently Change the Metabolomic Fingerprint of Susceptible Avena fatua L. Plants

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 368 ◽  
Author(s):  
J António Tafoya-Razo ◽  
Ernesto Oregel-Zamudio ◽  
Sabina Velázquez-Márquez ◽  
Jesús R. Torres-García

Intentional use of low dosage of herbicides has been considered the cause of non-target resistance in weeds. However, herbicide drift could be a source of low dosage that could be detected by weeds and change their metabolism. Furthermore, the minimum dose that a plant can detect in the environment is unknown, and it is unclear whether low doses could modify the response of weeds when they are first exposed to herbicides (priming effects). In this study, we determined the metabolomic fingerprinting using GC-MS of susceptible Avena fatua L. plants exposed to a gradient of doses (1, 0.1, 0.001, 0.0001, and 0x) relative to the recommended dose of clodinafop-propargyl. Additionally, we evaluated the primed plants when they received a second herbicide application. The results showed that even a 10,000-fold dilution of the recommended dose could induce a significant change in the plants’ metabolism and that this change is permanent over the biological cycle. There was no evidence that priming increased its resistance level. However, hormesis increased biomass accumulation and survival in A. fatua plants. Better application methods which prevent herbicide drift should be developed in order to avoid contact with weeds that grow around the crop fields.

2017 ◽  
Vol 4 (2) ◽  
pp. 149-161
Author(s):  
Berton Sianturi

Crassocephalum crepidioides on Cornfields in Dairi Regency had been reported tobecome more difficult to control using paraquat. The objective of the research was todetermine the characteristics and the distribution of C.crepidioides resistant to paraquatin cornfields. The experiment was carried out in two steps, the first step was screeningthe population of C. crepidioides with paraquat at the recommended dose, and the secondstep, dose-response experiment for the resistance level of C. crepidioides population withdose 0, 76, 152, 304,5, 609, 1218, and 2436 g.ai /ha. In the first step experiment, paraquatdichloride was applied at 280 g.ai/ha. The treatments were arranged in a randomized blockdesign with 3 replication. The second step experiment was that the resistant populationsconfirmed in the first experiment were sprayed for their dose-response. The treatmentswere arranged in a randomized complete block design (CRBD). The results showed thatof 30 populations of C. crepidiodes, 19 populations (63.3%) were categorized to beresistant with the mortality ranging from 10.84% to 52.08%, and 11 populations (36.7%),was categorized as high resistance with mortality of 0% to 9.21%. The level ofresistance (R/S) of R-C25, R-C27, and R-C30 populations of C. crepidioides were 12,3,14,86, and 24,83 times consecutively, compared with the susceptible population. Thenumber of C. crepidioides chlorophyl leaves in susceptible populations was significantlylower than that of a resistant populations.


2012 ◽  
Vol 92 (5) ◽  
pp. 923-931 ◽  
Author(s):  
H. J. Beckie ◽  
S. Shirriff

Beckie, H. J. and Shirriff, S. 2012. Site-specific wild oat ( Avena fatua L.) management. Can. J. Plant Sci. 92: 923–931. Variation in soil properties, such as soil moisture, across a hummocky landscape may influence wild oat emergence and growth. To evaluate wild oat emergence, growth, and management according to landscape position, a study was conducted from 2006 to 2010 in a hummocky field in the semiarid Moist Mixed Grassland ecoregion of Saskatchewan. The hypothesis tested was that wild oat emergence and growth would be greater in lower than upper slope positions under normal or dry early growing season conditions. Three herbicide treatments were imposed on the same plots each year of a 2-yr canola (Brassica napus L.) – wheat (Triticum aestivum L.) sequence: (1) nontreated (weedy) control; (2) herbicide application to upper and lower slope positions (i.e., full or blanket application); and (3) herbicide application to lower slope position only. Slope position affected crop and weed densities before in-crop herbicide application in years with dry spring growing conditions. Site-specific wild oat herbicide application in hummocky fields in semiarid regions may be justified based on results of wild oat control averaged across slope position. In year 2 of the crop sequence (wheat), overall (i.e., lower and upper slope) wild oat control based on density, biomass, and dockage (i.e., seed return) was similar between site-specific and full herbicide treatment in 2 of 3 yr. Because economic thresholds have not been widely adopted by growers in managing wild oat, site-specific treatment in years when conditions warrant may be an appropriate compromise between no application and blanket herbicide application.


2013 ◽  
Vol 51 (1-2) ◽  
pp. 81-92
Author(s):  
Denise Dostatny

Excess in application of herbicide such as Aminopielik and Chwastox in cereals crop was the cause of the increase in cover of some weeds (in particular grass), a few decrease in cover of a cultivated plant, a few decrease of number's species and the impoverishment composition in the <em>Caucalido-Scandicetum</em> association in the "Nadnidziański Landscape Park" area. In the records of the fields where herbicide was applied (tab.1: records 11-20), the weeds cover surplused cereals cover. <em>Apera spica-venti</em> and sometimes <em>Avena fatua<em> dominated in these records and the number of dicotyledonous species was insignificant. Where herbicides were not applied (tab.l: records 1-10), the overall weeds cover was smaller than the cover of a cultivated plant and the weeds number was significantly bigger. In these fields there existed an interspecious competition which didn't allow large development of one or two weed species. The research was made in summer 1997 by the Braun-Blanquet's method in cereals and data of herbicide application taken down.


2020 ◽  
Vol 30 (3) ◽  
pp. 385-390
Author(s):  
Donnie K. Miller ◽  
Thomas M. Batts ◽  
Josh T. Copes ◽  
David C. Blouin

Commercialization of crops tolerant to application of 2, 4-dichlorophenoxyacetic acid (2,4-D) and dicamba is a cause of major concern for sweetpotato (Ipomoea batatas) producers regarding potential negative impacts due to herbicide drift or sprayer contamination events. A field study was initiated in 2016 and repeated in 2017 to assess impacts of reduced rates of combinations of glyphosate with 2,4-D or dicamba on sweetpotato growth and production. Reduced rates of 1/10x, 1/33x, 1/66x, and 1/100x of a 1x rate of glyphosate at 1 lb/acre plus 2,4-D choline at 0.94 lb/acre and glyphosate at 1 lb/acre plus diglycolamine salt of dicamba at 0.5 lb/acre were applied to ‘Beauregard’ sweetpotato at 10 or 30 days after transplanting. With respect to visual injury, in general glyphosate plus dicamba proved to be more injurious than glyphosate plus 2,4-D, especially within the lower rate range. In most cases injury was greater at the later application timing. In either case, typical hormonal herbicide symptomology was quite evident 35 days after application. With respect to U.S. No. 1 and total (U.S. No. 1, canner, and jumbo grade) sweetpotato yield, greatest negative impact was observed with herbicide application at the upper rate range, particularly the 1/10 and 1/33x rates, and at the later application timing regardless of herbicide applied.


2013 ◽  
Vol 31 (4) ◽  
pp. 903-918 ◽  
Author(s):  
N. Hijano ◽  
P.A. Monquero ◽  
W.S. Munhoz ◽  
M.R. Gusmão

This study aimed to determine the selectivity of herbicides applied in pre- and post-emergence for alfalfa crops. Three separate experiments were carried out under greenhouse conditions. The first experiment was arranged in a completely randomized design with three replications in a 4 x 11 + 1 factorial scheme , with eleven herbicides (bentazon, chlorimuron-ethyl, fomesafen, fluazifop-p-butyl, saflufenacil, imazethapyr, clethodim, nicosulfuron, imazaquin, haloxyfop-methyl and MSMA), four doses of each herbicide (0.5 D, 0.75 D, 1.0 D and 1.25 D, where D = recommended dose), plus an untreated control. The products were applied to alfalfa plants at the stage of 4 to 5 leaf pairs. In the second experiment, the effect of pre-emergent herbicides on early alfalfa development was observed through a completely randomized design with five replications in a 3 x 4 x 2 factorial scheme, with three herbicides (hexazinone, atrazine + simazine, S-metolachlor), four doses (0.5 D, 0.75 D, 1.0 D and 1.25 D), and two types of soil texture (loamy and clay soil), plus an untreated control. The third experiment evaluated the action of atrazine, 2,550 g ha-1; clomazone - 600 g ha-1; diclosulam - 25 g ha-1; diuron+hexazinone - 936 + 264 g ha-1 and diuron+hexazinone +sulfometuron - 1,386 + 391 + 33.35 g ha-1 on alfalfa sown at different times after herbicide application. The effects of the treatments on alfalfa were evaluated according to visual phytotoxicity symptoms, plant height, and biomass of roots and shoots. Among the herbicides applied at post-emergence, imazethapyr, clethodim, haloxyfop-p-methyl and MSMA were selective for alfalfa, while among those applied at pre-emergence, none were selective, regardless of soil texture. The results of the third experiment showed that the herbicides diclosulam, hexazinone + diuron and atrazine caused less toxicity in alfalfa plants.


2020 ◽  
pp. 1-11
Author(s):  
Thomas R. Butts ◽  
L. Tom Barber ◽  
Jason K. Norsworthy ◽  
Jason Davis

Abstract A thorough understanding of commonly used herbicide application practices and technologies is needed to provide recommendations and determine necessary application education efforts. An online survey to assess ground and aerial herbicide application practices in Arkansas was made available online in spring 2019. The survey was direct-emailed to 272 agricultural aviators and 831 certified commercial pesticide applicators, as well as made publicly available online through multiple media sources. A total of 124 responses were received, of which 75 responses were specific to herbicide applications in Arkansas agronomic crops, accounting for approximately 49% of Arkansas’ planted agronomic crop hectares in 2019. Ground and aerial application equipment were used for 49% and 51% of the herbicide applications on reported hectares, respectively. Rate controllers were commonly used application technologies for both ground and aerial application equipment. In contrast, global positioning system-driven automatic nozzle and boom shut-offs were much more common on ground spray equipment than aerial equipment. Applicator knowledge of nozzles and usage was limited, regardless of ground or aerial applicators, as only 28% of respondents provided a specific nozzle type used, indicating a need for educational efforts on nozzles and their importance in herbicide applications. Of the reported nozzle types, venturi nozzles and straight-stream nozzles were the most commonly used for ground and aerial spray equipment, respectively. Spray carrier volumes of 96.3 and 118.8 L ha−1 for ground spray equipment and 49.6 and 59.9 L ha−1 for aerial application equipment were the means of reported spray volumes for systemic and contact herbicides, respectively. Respondents indicated application optimization was a major benefit of utilizing newer application technologies, herbicide drift was a primary challenge, and research needs expressed by respondents included adjuvants, spray volume efficacy, and herbicide drift. Findings from this survey provided insight into current practices, technologies, and needs of Arkansas herbicide applicators. Research and education efforts can be implemented as a result to address aforementioned needs while providing applied research-based information to applicators based on current practices.


Botany ◽  
2011 ◽  
Vol 89 (10) ◽  
pp. 655-661 ◽  
Author(s):  
J. Landry ◽  
C. Martinez ◽  
L. Rochefort

A common problem when growing Sphagnum mosses in the greenhouse is the propagation of parasitic fungi. Since no clear procedure is available to correct the situation, the aim of this experiment is to give scientists and growers a tool to control fungi invasions in the greenhouse. First, eight fungicides and the effect of temperature were tested on Petri dishes inoculated with two fungi commonly found in Sphagnum: Lyophyllum palustre (Peck) Singer and Chaetomium sp. To assess Sphagnum tolerance to fungicides, the four most efficient treatments were tested on healthy Sphagnum carpet, at maximum and minimum concentrations. Finally, the most promising fungicide, Nova (myclobutanil), was tested on Sphagnum carpets infected by L. palustre and Chaetomium sp. Since the concentration of this fungicide had no effect on biomass accumulation, the maximum concentration (0.54 g/L) was tested. Because of the high absorbency of Sphagnum, Nova was applied at the recommended dose (1 L/10 m2) and at three times the recommended dose (3 L/10 m2). An evaluation of infected Sphagnum individuals was carried out after a frequency of two and three applications. The recommendation for controlling the invasion of Sphagnum by L. palustre and Chaetomium sp. in the greenhouse is the application of Nova fungicide at three times the recommended dose. The frequency of applications had no significant effect.


Author(s):  
Gerhard Rossouw ◽  
Suzy Rogiers ◽  
Bruno Holzapfel ◽  
Leigh Schmidtke

Auxin-type herbicides are widely used to control broad-leafed weeds in cereal crop fields and pastures. Vapour drift, however, can spread several kilometres and therefore reach nearby vineyards. When grapevines are exposed to these chemicals, the active constituents induce phytotoxic effects including injury to foliage and impairment of reproductive development. The aim of this article is to outline the key potential implications of auxin-type herbicide drift exposure on leaf functioning and grapevine reproductive performance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245217
Author(s):  
Saeko Matsuhashi ◽  
Motoaki Asai ◽  
Keita Fukasawa

Integrated weed management (IWM) is currently the most appropriate and effective method of agricultural weed control. To determine the most effective strategy, it is necessary to compare the effects of different control options and their rotation. Avena fatua (common wild oat) is one of the most common and economically threatening grass weed species of cereal crops worldwide. To examine the effects of non-chemical weed management options (farmland use, delayed sowing, and summer irrigation) on control of A. fatua, we recorded coverage levels and field conditions in 41 sites during the spring growing season of winter wheat for about 10 years. A transition matrix model was then constructed to project coverage levels of A. fatua under each management option using ordinal logistic regression. The results showed that farmland use had a remarkable effect on coverage; notably, planting of paddy rice and vegetables, which respectively eliminated the effect of coverage in the previous year and facilitated rapid convergence of coverage to 0%. Thus, although 90% of fields under continuous wheat cultivation were found to be at risk of A. fatua colonization, the risk was reduced to almost 0% with rotation of effective farmland use. As summer irrigation was also effective, more than 50% of wheat fields with the option continuously converged to no risk for A. fatua colonization. When the different management cycles were repeated, the effects were observed within 3 years, with a steady state reached in less than 10 years. Overall, these results suggest that simplified monitoring data could help decision-making on IWM, thereby helping to improve the efficiency of agricultural production.


2020 ◽  
Vol 38 (1) ◽  
pp. 41-46
Author(s):  
André Gabriel ◽  
Juliano TV Resende ◽  
Josué C Marodin ◽  
Rafael de Matos ◽  
André R Zeist ◽  
...  

ABSTRACT Brazil’s low garlic productivity is attributed, mainly to the lateral shoot growth, a physiological anomaly characterized by early lateral shoot growth of cloves in noble group garlic cultivars. Considering the aforementioned information, the aim was to evaluate the occurrence of lateral shoot growth and productivity characteristics in garlic plants, cv. Chonan, subject to herbicide chemical stress. In order to do so, an experiment was conducted in outlining randomized blocks in a 3x5 factorial scheme, constituted by three herbicides (paraquat 500 g ha-1; ammonium gluphosinate 400 g ha-1 and glyphosate 720 g ha-1) and five subdoses (0, 5, 10, 15 and 20% of the minimum recommended dose of each herbicide). The electron transport rates (ETR) were evaluated after herbicide application, as well as the culture’s morphological and productive characteristics. The chemical stress caused by herbicides paraquat, ammonium gluphosinate and glyphosate in underdoses of 25, 40 and 36 i.a. ha-1, respectively, was efficient in reducing the electron transport rate and the lateral shoot growth of the Chonan garlic cultivar, and also technically viable in increasing the productivity of commercial bulbs.


Sign in / Sign up

Export Citation Format

Share Document